2,342 research outputs found

    Dimensions of Neural-symbolic Integration - A Structured Survey

    Full text link
    Research on integrated neural-symbolic systems has made significant progress in the recent past. In particular the understanding of ways to deal with symbolic knowledge within connectionist systems (also called artificial neural networks) has reached a critical mass which enables the community to strive for applicable implementations and use cases. Recent work has covered a great variety of logics used in artificial intelligence and provides a multitude of techniques for dealing with them within the context of artificial neural networks. We present a comprehensive survey of the field of neural-symbolic integration, including a new classification of system according to their architectures and abilities.Comment: 28 page

    A Survey on Bayesian Deep Learning

    Full text link
    A comprehensive artificial intelligence system needs to not only perceive the environment with different `senses' (e.g., seeing and hearing) but also infer the world's conditional (or even causal) relations and corresponding uncertainty. The past decade has seen major advances in many perception tasks such as visual object recognition and speech recognition using deep learning models. For higher-level inference, however, probabilistic graphical models with their Bayesian nature are still more powerful and flexible. In recent years, Bayesian deep learning has emerged as a unified probabilistic framework to tightly integrate deep learning and Bayesian models. In this general framework, the perception of text or images using deep learning can boost the performance of higher-level inference and in turn, the feedback from the inference process is able to enhance the perception of text or images. This survey provides a comprehensive introduction to Bayesian deep learning and reviews its recent applications on recommender systems, topic models, control, etc. Besides, we also discuss the relationship and differences between Bayesian deep learning and other related topics such as Bayesian treatment of neural networks.Comment: To appear in ACM Computing Surveys (CSUR) 202

    A unified approach to engine cylinder pressure reconstruction using time-delay neural networks with crank kinematics or block vibration measurements

    Get PDF
    Closed-loop combustion control (CLCC) in gasoline engines can improve efficiency, calibration effort, and performance using different fuels. Knowledge of in-cylinder pressures is a key requirement for CLCC. Adaptive cylinder pressure reconstruction offers a realistic alternative to direct sensing, which is otherwise necessary as legislation requires continued reductions in CO2 and exhaust emissions. Direct sensing however is expensive and may not prove adequately robust. A new approach is developed for in-cylinder pressure reconstruction on gasoline engines. The approach uses Time-Delay feed-forward Artificial Neural Networks trained with the standard Levenberg-Marquardt algorithm. The same approach can be applied to reconstruction via measured crank kinematics obtained from a shaft encoder, or measured engine cylinder block vibrations obtained from a production knock sensor. The basis of the procedure is initially justified by examination of the information content within measured data, which is considered to be equally important as the network architecture and training methodology. Key hypotheses are constructed and tested using data taken from a 3-cylinder (DISI) engine to reveal the influence of the data information content on reconstruction potential. The findings of these hypotheses tests are then used to develop the methodology. The approach is tested by reconstructing cylinder pressure across a wide range of steady-state engine operation using both measured crank kinematics and block accelerations. The results obtained show a very marked improvement over previously published reconstruction accuracy for both crank kinematics and cylinder block vibration based reconstruction using measurements obtained from a multi-cylinder engine. The paper shows that by careful processing of measured engine data, a standard neural network architecture and a standard training algorithm can be used to very accurately reconstruct engine cylinder pressure with high levels of robustness and efficiency
    • …
    corecore