74,559 research outputs found

    Soft margin estimation for automatic speech recognition

    Get PDF
    In this study, a new discriminative learning framework, called soft margin estimation (SME), is proposed for estimating the parameters of continuous density hidden Markov models (HMMs). The proposed method makes direct use of the successful ideas of margin in support vector machines to improve generalization capability and decision feedback learning in discriminative training to enhance model separation in classifier design. SME directly maximizes the separation of competing models to enhance the testing samples to approach a correct decision if the deviation from training samples is within a safe margin. Frame and utterance selections are integrated into a unified framework to select the training utterances and frames critical for discriminating competing models. SME offers a flexible and rigorous framework to facilitate the incorporation of new margin-based optimization criteria into HMMs training. The choice of various loss functions is illustrated and different kinds of separation measures are defined under a unified SME framework. SME is also shown to be able to jointly optimize feature extraction and HMMs. Both the generalized probabilistic descent algorithm and the Extended Baum-Welch algorithm are applied to solve SME. SME has demonstrated its great advantage over other discriminative training methods in several speech recognition tasks. Tested on the TIDIGITS digit recognition task, the proposed SME approach achieves a string accuracy of 99.61%, the best result ever reported in literature. On the 5k-word Wall Street Journal task, SME reduced the word error rate (WER) from 5.06% of MLE models to 3.81%, with relative 25% WER reduction. This is the first attempt to show the effectiveness of margin-based acoustic modeling for large vocabulary continuous speech recognition in a HMMs framework. The generalization of SME was also well demonstrated on the Aurora 2 robust speech recognition task, with around 30% relative WER reduction from the clean-trained baseline.Ph.D.Committee Chair: Dr. Chin-Hui Lee; Committee Member: Dr. Anthony Joseph Yezzi; Committee Member: Dr. Biing-Hwang (Fred) Juang; Committee Member: Dr. Mark Clements; Committee Member: Dr. Ming Yua

    A Bayesian Network View on Acoustic Model-Based Techniques for Robust Speech Recognition

    Full text link
    This article provides a unifying Bayesian network view on various approaches for acoustic model adaptation, missing feature, and uncertainty decoding that are well-known in the literature of robust automatic speech recognition. The representatives of these classes can often be deduced from a Bayesian network that extends the conventional hidden Markov models used in speech recognition. These extensions, in turn, can in many cases be motivated from an underlying observation model that relates clean and distorted feature vectors. By converting the observation models into a Bayesian network representation, we formulate the corresponding compensation rules leading to a unified view on known derivations as well as to new formulations for certain approaches. The generic Bayesian perspective provided in this contribution thus highlights structural differences and similarities between the analyzed approaches

    Speaker recognition using frequency filtered spectral energies

    Get PDF
    The spectral parameters that result from filtering the frequency sequence of log mel-scaled filter-bank energies with a simple first or second order FIR filter have proved to be an efficient speech representation in terms of both speech recognition rate and computational load. Recently, the authors have shown that this frequency filtering can approximately equalize the cepstrum variance enhancing the oscillations of the spectral envelope curve that are most effective for discrimination between speakers. Even better speaker identification results than using melcepstrum have been obtained on the TIMIT database, especially when white noise was added. On the other hand, the hybridization of both linear prediction and filter-bank spectral analysis using either cepstral transformation or the alternative frequency filtering has been explored for speaker verification. The combination of hybrid spectral analysis and frequency filtering, that had shown to be able to outperform the conventional techniques in clean and noisy word recognition, has yield good text-dependent speaker verification results on the new speaker-oriented telephone-line POLYCOST database.Peer ReviewedPostprint (published version

    SKOPE: A connectionist/symbolic architecture of spoken Korean processing

    Full text link
    Spoken language processing requires speech and natural language integration. Moreover, spoken Korean calls for unique processing methodology due to its linguistic characteristics. This paper presents SKOPE, a connectionist/symbolic spoken Korean processing engine, which emphasizes that: 1) connectionist and symbolic techniques must be selectively applied according to their relative strength and weakness, and 2) the linguistic characteristics of Korean must be fully considered for phoneme recognition, speech and language integration, and morphological/syntactic processing. The design and implementation of SKOPE demonstrates how connectionist/symbolic hybrid architectures can be constructed for spoken agglutinative language processing. Also SKOPE presents many novel ideas for speech and language processing. The phoneme recognition, morphological analysis, and syntactic analysis experiments show that SKOPE is a viable approach for the spoken Korean processing.Comment: 8 pages, latex, use aaai.sty & aaai.bst, bibfile: nlpsp.bib, to be presented at IJCAI95 workshops on new approaches to learning for natural language processin
    corecore