6 research outputs found

    Real-time Information, Uncertainty and Quantum Feedback Control

    Full text link
    Feedback is the core concept in cybernetics and its effective use has made great success in but not limited to the fields of engineering, biology, and computer science. When feedback is used to quantum systems, two major types of feedback control protocols including coherent feedback control (CFC) and measurement-based feedback control (MFC) have been developed. In this paper, we compare the two types of quantum feedback control protocols by focusing on the real-time information used in the feedback loop and the capability in dealing with parameter uncertainty. An equivalent relationship is established between quantum CFC and non-selective quantum MFC in the form of operator-sum representation. Using several examples of quantum feedback control, we show that quantum MFC can theoretically achieve better performance than quantum CFC in stabilizing a quantum state and dealing with Hamiltonian parameter uncertainty. The results enrich understanding of the relative advantages between quantum MFC and quantum CFC, and can provide useful information in choosing suitable feedback protocols for quantum systems.Comment: 24 page

    On the dynamics of two photons interacting with a two-qubit coherent feedback network}

    Full text link
    The purpose of this paper is to study the dynamics of a quantum coherent feedback network composed of two two-level systems (qubits) driven by two counter-propagating photons, one in each input channel. The coherent feedback network enhances the nonlinear photon-photon interaction inside the feedback loop. By means of quantum stochastic calculus and the input-output framework, the analytic form of the steady-state output two-photon state is derived. Based on the analytic form, the applications on the Hong-Ou-Mandel (HOM) interferometer and marginally stable single-photon devices using this coherent feedback structure have been demonstrated. The difference between continuous-mode and single-mode few-photon states is demonstrated.Comment: 15 pages, 4 figures; accepted by Automatica; comments are welcome

    Sampling-based Learning Control for Quantum Systems with Uncertainties

    Full text link
    Robust control design for quantum systems has been recognized as a key task in the development of practical quantum technology. In this paper, we present a systematic numerical methodology of sampling-based learning control (SLC) for control design of quantum systems with uncertainties. The SLC method includes two steps of "training" and "testing". In the training step, an augmented system is constructed using artificial samples generated by sampling uncertainty parameters according to a given distribution. A gradient flow based learning algorithm is developed to find the control for the augmented system. In the process of testing, a number of additional samples are tested to evaluate the control performance where these samples are obtained through sampling the uncertainty parameters according to a possible distribution. The SLC method is applied to three significant examples of quantum robust control including state preparation in a three-level quantum system, robust entanglement generation in a two-qubit superconducting circuit and quantum entanglement control in a two-atom system interacting with a quantized field in a cavity. Numerical results demonstrate the effectiveness of the SLC approach even when uncertainties are quite large, and show its potential for robust control design of quantum systems.Comment: 11 pages, 9 figures, in press, IEEE Transactions on Control Systems Technology, 201

    Analysis of Quantum Linear Systems' Response to Multi-photon States

    Full text link
    The purpose of this paper is to present a mathematical framework for analyzing the response of quantum linear systems driven by multi-photon states. Both the factorizable (namely, no correlation among the photons in the channel) and unfactorizable multi-photon states are treated. Pulse information of multi-photon input state is encoded in terms of tensor, and response of quantum linear systems to multi-photon input states is characterized by tensor operations. Analytic forms of output correlation functions and output states are derived. The proposed framework is applicable no matter whether the underlying quantum dynamic system is passive or active. The results presented here generalize those in the single-photon setting studied in (Milburn, 2008) and (Zhang and James, 2013}). Moreover, interesting multi-photon interference phenomena studied in (Sanaka, Resch, and Zeilinger, 2006), (Ou, 2007), and (Bartley, et al., 2012) can be reproduced in the proposed frameworkComment: 26 pages, 2 figures, accepted by Automatic
    corecore