3 research outputs found

    Dynamical Laws of the Coupled Gross-Pitaevskii Equations for Spin-1 Bose-Einstein Condensates

    Get PDF
    In this paper, we derive analytically the dynamical laws of the coupled Gross- Pitaevskii equations (CGPEs) without/with an angular momentum rotation term and an external magnetic field for modelling nonrotating/rotating spin-1 Bose-Eintein condensates. We prove the conservation of the angular momentum expectation when the external trapping potential is radially symmetric in two dimensions and cylindrically symmetric in three dimensions; obtain a system of first order ordinary differential equations (ODEs) governing the dynamics of the density of each component and solve the ODEs analytically in a few cases; derive a second order ODE for the dynamics of the condensate width and show that it is a periodic function without/with a perturbation; construct the analytical solution of the CGPEs when the initial data is chosen as a stationary state with its center- of-mass shifted away from the external trap center. Finally, these dynamical laws are confirmed by the direct numerical simulation results of the CGPEs

    A time-splitting spectral method for computing dynamics of spinor F=1 Bose-Einstein condensates

    No full text
    10.1080/00207160701458369International Journal of Computer Mathematics846925-944IJCM

    Exact nonlinear dynamics of Spinor BECs applied to nematic quenches

    Get PDF
    In this thesis we study the nonlinear dynamics of spin-1 and spin-2 Bose-Einstein condensates, with particular application to antiferromagnetic systems exhibiting nematic (beyond magnetic) order. Firstly, we give a derivation of the spinor energy functionals with a focus on the connections between the nonlinear terms. We derive a hierarchy of nonlinear irreducible multipole observables sensitive to different levels of nematic order, and explore the various nematic states in terms of their multipolar order, representations of their symmetries, and topological defects. We then develop an exact solution to the nonlinear dynamics of spinor Bose-Einstein condensates. We use this solution to construct efficient and accurate numerical algorithms to evolve the spinor Gross-Pitaevskii equation in time. We demonstrate the advantages of our algorithms with several 1D numerical test problems, comparing with existing methods in the literature. We apply our numerical methods to simulating quenches of the condensate between various antiferromagnetic phases for spin-1 and spin-2. For spin-1, we carry out quenches for a theoretical uniform system in 2D, and then specialize to the parameters used in a recent harmonically trapped experiment in 3D. We connect the long-time coarsening growth law of the relevant order parameter to the decay of half-quantum vortices, which are the relevant topological defects of the ground state. For the spin-2 system, we investigate a novel quench from two different quadrupolar-nematic phases to an octupolar-nematic “cyclic” phase which supports 1/3 fractional vortices. We develop appropriate order parameter observables which couple to the spin and superfluid currents generated by these defects, and show that a new growth law appears with exponent 1/3
    corecore