1,551 research outputs found

    Detecting disturbances in supply chains: the case of capacity constraints

    Get PDF
    Purpose – The ability to detect disturbances quickly as they arise in a supply chain helps to manage them efficiently and effectively. This paper is aimed at demonstrating the feasibility of automatically, and therefore quickly detecting a specific disturbance, which is constrained capacity at a supply chain echelon. Design/Methodology/approach – Different supply chain echelons of a simulated four echelon supply chain were individually capacity constrained to assess their impacts on the profiles of system variables, and to develop a signature that related the profiles to the echelon location of the capacity constraint. A review of disturbance detection techniques across various domains formed the basis for considering the signature based technique. Findings – The signature for detecting a capacity constrained echelon was found to be based on cluster profiles of shipping and net inventory variables for that echelon as well as other echelons in a supply chain, where the variables are represented as spectra. Originality/value– Detection of disturbances in a supply chain including that of constrained capacity at an echelon has seen limited research where this study makes a contribution

    Design of a Global Supply Chain for the Unexpected

    Get PDF
    Supply chains (SCs) play a crucial role in business operations and economies around the globe. They are in constant change and face challenges such as recurrent risks and disruption risks. The disruptive risks tend to cascade and propagate upstream and downstream of the disruption point. Due to the difficulty of calculating probabilities of disruptions, many decision makers prefer to underestimate disruptive risks. Losses of billions of dollars are accounted for each year due to the disruptive risks. These losses highlight the importance and need of having decision support systems and tools that can aid to design, model and analyze SCs that can cope with disruptions and their effects through all the stages. This research aims at developing new methods for designing and analyzing SCs that are prepared for unexpected events. It provides new insights into the methods to estimate the impact of possible disruptions during designing and planning stages. It further proposes complexity, robustness and resilience measures which facilitate the comparison between different SC designs in different scenarios. The significance of this research is to provide more stable production environments and develop the capability to prepare for unexpected events. Particular focus is given to natural disasters due to the magnitude and variety of impacts they could cause. Hence, a mathematical programming model that designs SCs and product architectures is proposed. The objective function is to minimize the disaster risk score of natural disasters (which depends on the geographical location of each SC entity and its associated “World Risk Index”). Also, a goal programming model is derived from the initial model. The goal programming model allows the inclusion of the decision-makers’ risk attitudes and costs to balance the decisions. The results obtained from the model showed that the SC and product architecture designs affect each other. Additionally, it was demonstrated that different risk-attitudes could lead to different SC designs. To achieve harmonious designs between SCs and products while remaining robust and controlling complexity, a novel methodology to assess structural SC complexity and robustness is presented using network analysis. This methodology includes the evaluation of different product architectures. Consequently, managers can choose the SC/product architecture that has a balanced level of complexity and robustness. It is worth noting that complexity and higher costs are needed to protect against disruptions. Moreover, the results demonstrated that the modular architecture is preferable as it has a balanced level of complexity and robustness. To analyze the dynamic behaviour of the SCs, a system dynamics framework is introduced to evaluate the impacts of disruptions in assembly SCs. Consequently, a pragmatic tool that provides organizational support is proposed. This framework enables the examination of full and partial disruptions and the incorporation of expediting orders after a disturbance. The SC performance indicators are the output of the proposed model. These indicators make the comparison between different scenarios easy. The usage of the framework and the findings can serve to define disruption policies, and assist in the decisions relating to the SC design. After running several scenarios, it was determined that the disruptions happening in the downstream levels have more impacts on the SC performance than the disruptions in the upstream levels. Hence, the disruption policies for the downstream levels should have higher priority. Moreover, it was demonstrated that expediting after disruptions could affect more the already damaged SC performance. Finally, to evaluate the SC performance and costs when facing disruptions, an index to assess SC resilience cost is provided. The metric considers the fulfilment rate in each period of each SC entity and its associated cost. This index allows comparison between different scenarios in the SC

    A Study of the Impact of Information Blackouts on the Bullwhip Effect of a Supply Chain Using Discrete-Event Simulations

    Get PDF
    This study adds to the supply chain management literature by introducing and investigating information blackouts, sudden and short-duration failure of the information flow. This study aims to contribute to the literature in following ways: first, to define information blackouts in a supply chain. Second, to investigate the response of supply chains to information blackouts using discrete-event simulation. Prior research has focused more on analyzing systemic disruptions to supply chains from well-known sources. We expect the results of this study to be useful to supply chain managers in disaster prone areas

    Asymmetric Information Mitigation in Supply Chain: A Systematic Literature Review

    Get PDF
    With the level of competition and consumer demand is changing rapidly, the speed and accuracy of the information flow in the supply chain increasingly necessary. Sharing of information between the parties in a supply chain plays an important role in improving the sustainability of a business, but imperfection information is inevitable because each party in the supply chain has a different objective. This condition increases the importance of a research on the mitigation of asymmetric information in the supply chain, therefore the purpose of this study was to conduct a review of previous studies related to overcoming the asymmetric information and map research trend on mitigating asymmetric information in the supply chain. We used systematic literature review (SLR) methods to analyze the data collected from Web of Science and Scopus database from 2005 to 2016. The results of this study can be used as a guide and a reference for further research related to overcoming the asymmetry of information in the supply chain in every industrial sector

    A Critical Evaluation Of Empirical Non-Linear Control System And System Dynamics Modeling Theories For Mitigating Risks Arising From Bullwhip Effect

    Get PDF
    Bullwhip effect is a threat observed in multi-echelon supply chains, which is one of the prominent indicators of inefficiencies in a supply chain. Primarily, bullwhip effect occurs as a result of disruptions in information and materials flow, lead-time delays, lack of coordination, and panic stocking amidst visibility into local risk factors. When bullwhip effect occurs, the demand variations entering the supply chain from the customer end amplifies gradually as it flows upstream towards the supplier ends. This may cause unused inventory and may later lead to wastage and obsolescence. Bullwhip effect can be curbed through many approaches. This study has focused on control theory approach that promotes small-scale control behaviors throughout the supply chain to dampen the bullwhip tidal waves. The approach investigated in this research is a combination of control system modeling and systems dynamics modeling, which is not researched adequately by bullwhip academics. Based on the investigations, a six-step approach for reducing Bullwhip effect is proposed in this research and illustrated with examples. The six-step approach comprises of first-level multi-echelon survey to derive the initial system dynamics model, second-level survey to collect primary data for all the variables and relationships formed, principal component analysis and Cronbach Alpha / split-half testing for reliability, verification, and validity testing and exploring the best optimal construct using structural equation modeling, and finally, applying controllers to the optimal systems dynamics model through interpretive analysis of the model

    Examining price and service competition among retailers in a supply chain under potential demand disruption

    Full text link
    © 2017 Elsevier Ltd Supply chain disruptions management has attracted significant attention among researchers and practitioners. The paper aims to examine the effect of potential market demand disruptions on price and service level for competing retailers. To investigate the effect of potential demand disruptions, we consider both a centralized and a decentralized supply chain structure. To analyze the decentralized supply chain, the Manufacturing Stackelberg (MS) game theoretical approach was undertaken. The analytical results were tested using several numerical analyses. It was shown that price and service level investment decisions are significantly influenced by demand disruptions to retail markets. For example, decentralized decision makers tend to lower wholesale and retail prices under potential demand disruptions, whereas a proactive retailer needs to increase service level with an increased level of possible disruptions. This research may aid managers to analyze disruptions prone market and to make appropriate decision for price and service level. The manufacturer or the retailers will also be able to better determine when to close a market based on the proposed analysis by considering anticipated disruptions. The benefits and usefulness of the proposed approach are explained through a real-life case adopted from a toy supply chain in Bangladesh

    An Integrated Retail Supply Chain Risk Management Framework: A System Thinking Approach

    Get PDF
    It is often taken for granted that the right products will be available to buy in retail outlets seven days a week, 52 weeks a year. Consumer perception is that of a simple service requirement, but the reality is a complex, time sensitive system - the retail supply chain (RSC). Due to short product life-cycles with uncertain supply and demand behaviour, the RSC faces many challenges and is very vulnerable to disruptions. In addition, external risk events such as BREXIT, extreme weather, the financial crisis, and terror attacks mean there is a need for effective RSC risk management (RSCRM) processes within organisations. Literature shows that although there is an increasing amount of research in RSCRM, it is highly theoretical with limited empirical evidence or applied methodologies. With an active enthusiasm coming from industry practitioners for RSCRM methodologies and support solutions, the RSCRM research community have acknowledged that the main issue for future research is not tools and techniques, but collaborative RSC system wide implementation. The implementation of a cross-organisational initiative such as RSCRM is a very complex task that requires real-world frameworks for real-world practitioners. Therefore, this research study attempts to explore the business requirements for developing a three-stage integrated RSCRM framework that will encourage extended RSC collaboration. While focusing on the practitioner requirements of RSCRM projects and inspired by the laws of Thermodynamics and the philosophy of System Thinking, in stage one a conceptual reference model, The �6 Coefficient, was developed building on the formative work of supply chain excellence and business process management. The �6 Coefficient reference model has been intricately designed to bridge the theoretical gap between practitioner and researcher with the aim of ensuring practitioner confidence in partaking in a complex business process project. Stage two focused on a need for a standardised vocabulary, and through the SCOR11 reference guide, acts as a calibration point for the integrated framework, ensuring easy transfer and application within supply chain industries. In their design, stages one and two are perfect complements to the final stage of the integrated framework, a risk assessment toolbox based on a Hybrid Simulation Study capable of monitoring the disruptive behaviour of a multi-echelon RSC from both a macro and micro level using the techniques of System Dynamics (SD) and Discrete Event Simulation (DES) modelling respectively. Empirically validated through an embedded mixed methods case study, results of the integrated framework application are very encouraging. The first phase, the secondary exploratory study, gained valuable empirical evidence of the barriers to successfully implementing a complex business project and also validated using simulation as an effective risk assessment tool. Results showed certain high-risk order policy decisions could potentially reduce total costs (TC) by over 55% and reduce delivery times by 3 days. The use of the �6 Coefficient as the communication/consultation phase of the primary RSCRM case study was hugely influential on the success of the overall hybrid simulation study development and application, with significant increase in both practitioner and researcher confidence in running an RSCRM project. This was evident in the results of the hybrid model’s macro and micro assessment of the RSC. SD results effectively monitored the behaviour of the RSC under important disruptive risks, showing delayed effects to promotions and knowledge loss resulted in a bullwhip effect pattern upstream with the FMCG manufacturer’s TC increasing by as much as €50m. The DES analysis, focusing on the NDC function of the RSC also showed results of TC sensitivity to order behaviour from retailers, although an optimisation based risk treatment has reduced TC by 30%. Future research includes a global empirical validation of the �6 Coefficient and enhancement of the application of thermodynamic laws in business process management. The industry calibration capabilities of the integrated framework application of the integrated framework will also be extensively tested

    Mitigating the Bullwhip Effect and Enhancing Supply Chain Performance through Demand Information Sharing: An ARENA Simulation Study

    Get PDF
    The supply chain is a network of organizations that collaborate and leverage their resources to deliver products or services to end-customers. In today's globalized and competitive market, organizations must specialize and form partnerships to gain a competitive edge. To thrive in their respective industries, organizations need to prioritize supply chain coordination, as it is integral to their business processes.   Supply chain management focuses on the collaboration of organizations within the supply chain. However, when each echelon member optimizes their goals without considering the network's impact, it leads to suboptimal performance and inefficiencies. This phenomenon is known as the Bullwhip effect, where order variability increases as it moves upstream in the supply chain. The lack of coordination, unincorporated material and information flows, and absence of ordering rules contribute to poor supply chain dynamics. To improve supply chain performance, it is crucial to align organizational activities. Previous research has proposed solutions to mitigate the Bullwhip effect, which has been a topic of intense study for many decades. This research aims to investigate the causes and mitigations of the Bullwhip effect based on existing research. Additionally, the paper utilizes ARENA simulation to examine the impact of sharing end-customer demand information. As far as we are aware, no study has been conducted to deeply simulate the bullwhip effect using the ARENA simulation. Previous studies have investigated this phenomenon, but without delving into its intricacies. The simulation results offer potential strategies to mitigate the Bullwhip effect through demand information sharing. Keywords: Supply Chain Management, Bullwhip effect, Inventory management, ARENA simulation, Information sharing, forecasting technique, Demand variability. DOI: 10.7176/JESD/14-14-07 Publication date:August 31st 202

    The impact of product returns and remanufacturing uncertainties on the dynamic performance of a multi-echelon closed-loop supply chain

    Get PDF
    We investigate a three-echelon manufacturing and remanufacturing closed-loop supply chain (CLSC) constituting of a retailer, a manufacturer and a supplier. Each echelon, apart from its usual operations in the forward SC (FSC), has its own reverse logistics (RL) operations. We assume that RL information is transparent to the FSC, and the same replenishment policies are used throughout the supply chain. We focus on the impact on dynamic performance of uncertainties in the return yield, RL lead time and the product consumption lead time. Two outcomes are studied: order rate and serviceable inventory. The results suggest that higher return yield improves dynamic performance in terms of overshoot and risk of stock-out with a unit step response as input. However, when the return yield reaches a certain level, the classic bullwhip propagation normally associated with the FSC does not always hold. The longer remanufacturing and product consumption lead times result in a higher overshoot and a longer time to recover inventory, as well as more oscillation in the step response at the upstream echelons. We also study bullwhip and inventory variance when demand is a random variable. Our analysis suggests that higher return yield contributes to reduced bullwhip and inventory variance at the echelon level but for the CLSC as a whole the level of bullwhip may decrease as well as increase as it propagates along the supply chain. The reason for such behaviour is due to the interaction of the various model parameters and should be the subject of further analytical research. Furthermore, by studying the three-echelon CLSC, we produce a general equation for eliminating inventory offsets in an n-echelon CLSC. This is helpful to managers who wish to maintain inventory service levels in multi-echelon CLSCs
    • …
    corecore