4,558 research outputs found

    Totally Corrective Multiclass Boosting with Binary Weak Learners

    Full text link
    In this work, we propose a new optimization framework for multiclass boosting learning. In the literature, AdaBoost.MO and AdaBoost.ECC are the two successful multiclass boosting algorithms, which can use binary weak learners. We explicitly derive these two algorithms' Lagrange dual problems based on their regularized loss functions. We show that the Lagrange dual formulations enable us to design totally-corrective multiclass algorithms by using the primal-dual optimization technique. Experiments on benchmark data sets suggest that our multiclass boosting can achieve a comparable generalization capability with state-of-the-art, but the convergence speed is much faster than stage-wise gradient descent boosting. In other words, the new totally corrective algorithms can maximize the margin more aggressively.Comment: 11 page

    Multiclass Learning with Simplex Coding

    Get PDF
    In this paper we discuss a novel framework for multiclass learning, defined by a suitable coding/decoding strategy, namely the simplex coding, that allows to generalize to multiple classes a relaxation approach commonly used in binary classification. In this framework, a relaxation error analysis can be developed avoiding constraints on the considered hypotheses class. Moreover, we show that in this setting it is possible to derive the first provably consistent regularized method with training/tuning complexity which is independent to the number of classes. Tools from convex analysis are introduced that can be used beyond the scope of this paper

    Generalized Boosting Algorithms for Convex Optimization

    Full text link
    Boosting is a popular way to derive powerful learners from simpler hypothesis classes. Following previous work (Mason et al., 1999; Friedman, 2000) on general boosting frameworks, we analyze gradient-based descent algorithms for boosting with respect to any convex objective and introduce a new measure of weak learner performance into this setting which generalizes existing work. We present the weak to strong learning guarantees for the existing gradient boosting work for strongly-smooth, strongly-convex objectives under this new measure of performance, and also demonstrate that this work fails for non-smooth objectives. To address this issue, we present new algorithms which extend this boosting approach to arbitrary convex loss functions and give corresponding weak to strong convergence results. In addition, we demonstrate experimental results that support our analysis and demonstrate the need for the new algorithms we present.Comment: Extended version of paper presented at the International Conference on Machine Learning, 2011. 9 pages + appendix with proof
    corecore