2,701 research outputs found

    Decoherence times of universal two-qubit gates in the presence of broad-band noise

    Full text link
    The controlled generation of entangled states of two quantum bits is a fundamental step toward the implementation of a quantum information processor. In nano-devices this operation is counteracted by the solid-state environment, characterized by a broadband and non-monotonic power spectrum, often 1/f at low frequencies. For single-qubit gates, incoherent processes due to fluctuations acting on different time scales result in peculiar short- and long-time behavior. Markovian noise gives rise to exponential decay with relaxation and decoherence times, T1 and T2, simply related to the symmetry of the qubit-environment coupling Hamiltonian. Noise with the 1/f power spectrum at low frequencies is instead responsible for defocusing processes and algebraic short-time behavior. In this paper, we identify the relevant decoherence times of an entangling operation due to the different decoherence channels originating from solid-state noise. Entanglement is quantified by concurrence, which we evaluate in an analytic form employing a multi-stage approach. The 'optimal' operating conditions of reduced sensitivity to noise sources are identified. We apply this analysis to a superconducting \sqrt{i-SWAP} gate for experimental noise spectra.Comment: 35 pages, 11 figure

    Dark-bright gap solitons in coupled-mode one-dimensional saturable waveguide arrays

    Get PDF
    In the present work, we consider the dynamics of dark solitons as one mode of a defocusing photorefractive lattice coupled with bright solitons as a second mode of the lattice. Our investigation is motivated by an experiment which illustrates that such coupled states can exist with both components in the first gap of the linear band spectrum. This finding is further extended by the examination of different possibilities from a theoretical perspective, such as symbiotic ones where the bright component is supported by states of the dark component in the first or second gap, or non-symbiotic ones where the bright soliton is also a first-gap state coupled to a first or second gap state of the dark component. While the obtained states are generally unstable, these instabilities typically bear fairly small growth rates which enable their observation for experimentally relevant propagation distances

    Geometric stabilization of extended S=2 vortices in two-dimensional photonic lattices: theoretical analysis, numerical computation and experimental results

    Get PDF
    In this work, we focus our studies on the subject of nonlinear discrete self-trapping of S=2 (doubly-charged) vortices in two-dimensional photonic lattices, including theoretical analysis, numerical computation and experimental demonstration. We revisit earlier findings about S=2 vortices with a discrete model, and find that S=2 vortices extended over eight lattice sites can indeed be stable (or only weakly unstable) under certain conditions, not only for the cubic nonlinearity previously used, but also for a saturable nonlinearity more relevant to our experiment with a biased photorefractive nonlinear crystal. We then use the discrete analysis as a guide towards numerically identifying stable (and unstable) vortex solutions in a more realistic continuum model with a periodic potential. Finally, we present our experimental observation of such geometrically extended S=2 vortex solitons in optically induced lattices under both self-focusing and self-defocusing nonlinearities, and show clearly that the S=2 vortex singularities are preserved during nonlinear propagation

    Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media

    Full text link
    We present an overview of recent advances in the understanding of optical beams in nonlinear media with a spatially nonlocal nonlinear response. We discuss the impact of nonlocality on the modulational instability of plane waves, the collapse of finite-size beams, and the formation and interaction of spatial solitons.Comment: Review article, will be published in Journal of Optics B, special issue on Optical Solitons, 6 figure

    Feshbach Resonance Management of Bose-Einstein Condensates in Optical Lattices

    Get PDF
    We analyze gap solitons in trapped Bose-Einstein condensates (BECs) in optical lattice potentials under Feshbach resonance management. Starting with an averaged Gross-Pitaevsky (GP) equation with a periodic potential, we employ an envelope wave approximation to derive coupled-mode equations describing the slow BEC dynamics in the first spectral gap of the optical lattice. We construct exact analytical formulas describing gap soliton solutions and examine their spectral stability using the Chebyshev interpolation method. We show that these gap solitons are unstable far from the threshold of local bifurcation and that the instability results in the distortion of their shape. We also predict the threshold of the power of gap solitons near the local bifurcation limit.Comment: 8 pages, 4 figures (1 with six parts, 3 with two parts
    corecore