2 research outputs found

    A Polymorphic RPC Calculus

    Full text link
    The RPC calculus is a simple semantic foundation for multi-tier programming languages such as Links in which located functions can be written for the client-server model. Subsequently, the typed RPC calculus is designed to capture the location information of functions by types and to drive location type-directed slicing compilations. However, the use of locations is currently limited to monomorphic ones, which is one of the gaps to overcome to put into practice the theory of RPC calculi for client-server model. This paper proposes a polymorphic RPC calculus to allow programmers to write succinct multi-tier programs using polymorphic location constructs. Then the polymorphic multi-tier programs can be automatically translated into programs only containing location constants amenable to the existing slicing compilation methods. We formulate a type system for the polymorphic RPC calculus, and prove its type soundness. Also, we design a monomorphization translation together with proofs on its type and semantic correctness for the translation.Comment: SBMF-Brazilian Symposium on Formal Methods 201

    Gavial: Programming the web with multi-tier FRP

    Full text link
    Developing web applications requires dealing with their distributed nature and the natural asynchronicity of user input and network communication. For facilitating this, different researchers have explored the combination of a multi-tier programming language and functional reactive programming. However, existing proposals take this approach only part of the way (some parts of the application remain imperative) or remain naive, with no regard for avoiding glitches across network communication, network traffic overhead, compatibility with common APIs like XMLHttpRequest etc. In this paper, we present Gavial: the first mature design and implementation of multi-tier FRP that allows constructing an entire web application as a functionally reactive program. By applying a number of new ideas, we demonstrate that multi-tier FRP can in fact deal realistically with important practical aspects of building web applications. At the same time, we retain the declarative nature of FRP, where behaviors and events have an intuitive, compositional semantics and a clear dependency structure
    corecore