6 research outputs found

    Efficient Variational Inference for Sparse Deep Learning with Theoretical Guarantee

    Full text link
    Sparse deep learning aims to address the challenge of huge storage consumption by deep neural networks, and to recover the sparse structure of target functions. Although tremendous empirical successes have been achieved, most sparse deep learning algorithms are lacking of theoretical support. On the other hand, another line of works have proposed theoretical frameworks that are computationally infeasible. In this paper, we train sparse deep neural networks with a fully Bayesian treatment under spike-and-slab priors, and develop a set of computationally efficient variational inferences via continuous relaxation of Bernoulli distribution. The variational posterior contraction rate is provided, which justifies the consistency of the proposed variational Bayes method. Notably, our empirical results demonstrate that this variational procedure provides uncertainty quantification in terms of Bayesian predictive distribution and is also capable to accomplish consistent variable selection by training a sparse multi-layer neural network.Comment: Accepted to NeurIPS 202

    Understanding the wiring evolution in differentiable neural architecture search

    Full text link
    Controversy exists on whether differentiable neural architecture search methods discover wiring topology effectively. To understand how wiring topology evolves, we study the underlying mechanism of several existing differentiable NAS frameworks. Our investigation is motivated by three observed searching patterns of differentiable NAS: 1) they search by growing instead of pruning; 2) wider networks are more preferred than deeper ones; 3) no edges are selected in bi-level optimization. To anatomize these phenomena, we propose a unified view on searching algorithms of existing frameworks, transferring the global optimization to local cost minimization. Based on this reformulation, we conduct empirical and theoretical analyses, revealing implicit inductive biases in the cost's assignment mechanism and evolution dynamics that cause the observed phenomena. These biases indicate strong discrimination towards certain topologies. To this end, we pose questions that future differentiable methods for neural wiring discovery need to confront, hoping to evoke a discussion and rethinking on how much bias has been enforced implicitly in existing NAS methods.Comment: AISTATS 202

    Adaptive Variational Bayesian Inference for Sparse Deep Neural Network

    Full text link
    In this work, we focus on variational Bayesian inference on the sparse Deep Neural Network (DNN) modeled under a class of spike-and-slab priors. Given a pre-specified sparse DNN structure, the corresponding variational posterior contraction rate is characterized that reveals a trade-off between the variational error and the approximation error, which are both determined by the network structural complexity (i.e., depth, width and sparsity). However, the optimal network structure, which strikes the balance of the aforementioned trade-off and yields the best rate, is generally unknown in reality. Therefore, our work further develops an {\em adaptive} variational inference procedure that can automatically select a reasonably good (data-dependent) network structure that achieves the best contraction rate, without knowing the optimal network structure. In particular, when the true function is H{\"o}lder smooth, the adaptive variational inference is capable to attain (near-)optimal rate without the knowledge of smoothness level. The above rate still suffers from the curse of dimensionality, and thus motivates the teacher-student setup, i.e., the true function is a sparse DNN model, under which the rate only logarithmically depends on the input dimension

    Luck Matters: Understanding Training Dynamics of Deep ReLU Networks

    Full text link
    We analyze the dynamics of training deep ReLU networks and their implications on generalization capability. Using a teacher-student setting, we discovered a novel relationship between the gradient received by hidden student nodes and the activations of teacher nodes for deep ReLU networks. With this relationship and the assumption of small overlapping teacher node activations, we prove that (1) student nodes whose weights are initialized to be close to teacher nodes converge to them at a faster rate, and (2) in over-parameterized regimes and 2-layer case, while a small set of lucky nodes do converge to the teacher nodes, the fan-out weights of other nodes converge to zero. This framework provides insight into multiple puzzling phenomena in deep learning like over-parameterization, implicit regularization, lottery tickets, etc. We verify our assumption by showing that the majority of BatchNorm biases of pre-trained VGG11/16 models are negative. Experiments on (1) random deep teacher networks with Gaussian inputs, (2) teacher network pre-trained on CIFAR-10 and (3) extensive ablation studies validate our multiple theoretical predictions

    Understanding Self-supervised Learning with Dual Deep Networks

    Full text link
    We propose a novel theoretical framework to understand contrastive self-supervised learning (SSL) methods that employ dual pairs of deep ReLU networks (e.g., SimCLR). First, we prove that in each SGD update of SimCLR with various loss functions, including simple contrastive loss, soft Triplet loss and InfoNCE loss, the weights at each layer are updated by a \emph{covariance operator} that specifically amplifies initial random selectivities that vary across data samples but survive averages over data augmentations. To further study what role the covariance operator plays and which features are learned in such a process, we model data generation and augmentation processes through a \emph{hierarchical latent tree model} (HLTM) and prove that the hidden neurons of deep ReLU networks can learn the latent variables in HLTM, despite the fact that the network receives \emph{no direct supervision} from these unobserved latent variables. This leads to a provable emergence of hierarchical features through the amplification of initially random selectivities through contrastive SSL. Extensive numerical studies justify our theoretical findings. Code is released in https://github.com/facebookresearch/luckmatters/tree/master/ssl

    Sharp Rate of Convergence for Deep Neural Network Classifiers under the Teacher-Student Setting

    Full text link
    Classifiers built with neural networks handle large-scale high dimensional data, such as facial images from computer vision, extremely well while traditional statistical methods often fail miserably. In this paper, we attempt to understand this empirical success in high dimensional classification by deriving the convergence rates of excess risk. In particular, a teacher-student framework is proposed that assumes the Bayes classifier to be expressed as ReLU neural networks. In this setup, we obtain a sharp rate of convergence, i.e., O~d(n2/3)\tilde{O}_d(n^{-2/3}), for classifiers trained using either 0-1 loss or hinge loss. This rate can be further improved to O~d(n1)\tilde{O}_d(n^{-1}) when the data distribution is separable. Here, nn denotes the sample size. An interesting observation is that the data dimension only contributes to the log(n)\log(n) term in the above rates. This may provide one theoretical explanation for the empirical successes of deep neural networks in high dimensional classification, particularly for structured data
    corecore