5,994 research outputs found

    Deep Drone Racing: From Simulation to Reality with Domain Randomization

    Full text link
    Dynamically changing environments, unreliable state estimation, and operation under severe resource constraints are fundamental challenges that limit the deployment of small autonomous drones. We address these challenges in the context of autonomous, vision-based drone racing in dynamic environments. A racing drone must traverse a track with possibly moving gates at high speed. We enable this functionality by combining the performance of a state-of-the-art planning and control system with the perceptual awareness of a convolutional neural network (CNN). The resulting modular system is both platform- and domain-independent: it is trained in simulation and deployed on a physical quadrotor without any fine-tuning. The abundance of simulated data, generated via domain randomization, makes our system robust to changes of illumination and gate appearance. To the best of our knowledge, our approach is the first to demonstrate zero-shot sim-to-real transfer on the task of agile drone flight. We extensively test the precision and robustness of our system, both in simulation and on a physical platform, and show significant improvements over the state of the art.Comment: Accepted as a Regular Paper to the IEEE Transactions on Robotics Journal. arXiv admin note: substantial text overlap with arXiv:1806.0854

    Voliro: An Omnidirectional Hexacopter With Tiltable Rotors

    Full text link
    Extending the maneuverability of unmanned areal vehicles promises to yield a considerable increase in the areas in which these systems can be used. Some such applications are the performance of more complicated inspection tasks and the generation of complex uninterrupted movements of an attached camera. In this paper we address this challenge by presenting Voliro, a novel aerial platform that combines the advantages of existing multi-rotor systems with the agility of omnidirectionally controllable platforms. We propose the use of a hexacopter with tiltable rotors allowing the system to decouple the control of position and orientation. The contributions of this work involve the mechanical design as well as a controller with the corresponding allocation scheme. This work also discusses the design challenges involved when turning the concept of a hexacopter with tiltable rotors into an actual prototype. The agility of the system is demonstrated and evaluated in real- world experiments.Comment: Submitted to Robotics and Automation Magazin

    Generic Drone Control Platform for Autonomous Capture of Cinema Scenes

    Full text link
    The movie industry has been using Unmanned Aerial Vehicles as a new tool to produce more and more complex and aesthetic camera shots. However, the shooting process currently rely on manual control of the drones which makes it difficult and sometimes inconvenient to work with. In this paper we address the lack of autonomous system to operate generic rotary-wing drones for shooting purposes. We propose a global control architecture based on a high-level generic API used by many UAV. Our solution integrates a compound and coupled model of a generic rotary-wing drone and a Full State Feedback strategy. To address the specific task of capturing cinema scenes, we combine the control architecture with an automatic camera path planning approach that encompasses cinematographic techniques. The possibilities offered by our system are demonstrated through a series of experiments
    • …
    corecore