40 research outputs found

    A Terahertz Holography Imaging System for Concealed Weapon Detection Application

    Get PDF
    PhDMany research groups have conducted the investigation into terahertz technology for various applications over the last decade. THz imaging for security screening has been one of the most important applications because of its superior performance of high resolution and not health hazardous. Due to increasing security requirements, it is desirable to devise a high-speed imaging system with high image quality for concealed weapon detection. Therefore, this thesis presents my research into a low-cost and fast THz imaging system for security application. This research has made a number of contributes to THz imaging, such as proposing the beam scanning imaging approach to reduce the scanning time; developing the simulation method of the scanned imaging system; investigating new reconstruction algorithms; studying the optimal spatial sampling criterion; and verifying the beam scanning scheme in experiment. Firstly, the beam scanning scheme is proposed and evaluated in both simulation and experiment, compared to the widely applied raster scanning scheme. A better mechanic rotation structure is developed to reduce the scanning time consumed and realise a more compact system. Then, a rotary Dragonian multi-reflector antenna subsystem, comprising two rotated reflectors is designed to form a similar synthetic aperture being realised in the raster scanned scheme. Thirdly, the simulation of the THz scanning imaging system is achieved by employing Physical Optics algorithm. The transposed convolution and partial inverse convolution reconstruction algorithms are investigated to speed up the image re-construction. Finally, two THz imaging systems based on the raster and beam scanning schemes are assessed and compared in the experiments. The back-propagation, transposed convolution and partial inverse convolution algorithms are applied in these experiments to reconstruct the images. The proposed beam scanning scheme can be further explored together with antenna arrays to provide a compact, fast and low-cost THz imaging system in the future

    Millimetre wave imaging for concealed target detection

    Get PDF
    PhDConcealed weapon detection (CWD) has been a hot topic as the concern about pub- lic safety increases. A variety of approaches for the detection of concealed objects on the human body based on earth magnetic ÂŻeld distortion, inductive magnetic ÂŻeld, acoustic and ultrasonic, electromagnetic resonance, MMW (millimetre wave), THz, Infrared, x-ray technologies have been suggested and developed. Among all of them, MMW holographic imaging is considered as a promising approach due to the relatively high penetration and high resolution that it can oÂźer. Typical concealed target detection methods are classiÂŻed into 2 categories, the ÂŻrst one is a resonance based target identiÂŻcation technique, and the second one is an imaging based system. For the former, the complex natural resonance (CNR) frequencies associated with a certain target are extracted and used for identiÂŻcation, but this technique has an issue of high false alarm rate. The microwave/millimetre wave imaging systems can be categorized into two types: passive systems and active sys- tems. For the active microwave/millimetre wave imaging systems, the microwave holographic imaging approach was adopted in this thesis. Such a system can oper- ate at either a single frequency or multiple frequencies (wide band). An active, coherent, single frequency operation millimetre wave imaging system based on the theory of microwave holography was developed. Based on literature surveys and ÂŻrst hand experimental results, this thesis aims to provide system level parame- ter determination to aid the development of a target detection imager. The goal is approached step by step in 7 chapters, with topics and issues addressed rang- ing from reviewing the past work, ÂŻnding out the best candidate technology, i.e. the MMW holographic imaging combined with the resonance based target recog- i nition technique, the construction of the 94 GHz MMW holographic prototype imager, experimental trade-oÂź investigation of system parameters, imager per- formance evaluation, low proÂŻle components and image enhancement techniques, feasibility investigation of resonance based technique, to system implementation based on the parameters and results achieved. The task set forth in the beginning is completed by coming up with an entire system design in the end.

    Real-time video rate terahertz digital holographic imaging system

    Get PDF
    Terahertz (THz) radiation describes electromagnetic (EM) radiation with a frequency of between 0.1-10 THz. There has been widespread interest in THz imaging which has been demonstrated in numerous applications from medical to non-destructive evaluation (NDE) due to the unique properties of radiation at these wavelengths. Current THz imaging systems suffer many drawbacks including the requirement of expensive components, slow imaging frame-rates and poor resolution. In this thesis, a digital THz holography system is demonstrated which could offer a high-performance and potentially low-cost alternative. The design and implementation of the first full video-rate (50 Hz) THz digital holography system is presented in this thesis. The system operates with coherent radiation of 2.52 THz (118.8 ”m) and features low-cost optical components. The system’s ability for imaging concealed objects is shown which suggests potential as a NDE tool. The potential to be used as a 3D depth imaging tool is also shown. The publication relating to this work along with the movies and data-set can be found from the following reference along with in the thesis data-set: M. Humphreys, J. Grant, I. Escorcia-Carranza, C. Accarino, M. Kenney, Y. Shah, K. Rew, and D. Cumming, "Video-rate terahertz digital holographic imaging system," Opt. Express 26, 25805-25813 (2018)

    3D Holographic Millimeter-Wave Imaging for Concealed Metallic Forging Objects Detection

    Get PDF
    This chapter investigates the feasibility of using 3D holographic millimeter-wave (HMMW) imaging for diagnosis of concealed metallic forging objects (MFOs) in inhomogeneous medium. A 3D numerical system, including radio frequency (RF) transmitters and detectors, various realistic MFOs models and signal and imaging processing, is developed to analyze the measured data and reconstruct images of target MFOs. Simulation and experimental validations are performed to evaluate the HMMW approach for diagnosis of concealed MFOs. Results show that various concealed objects can be clearly represented in the reconstructed images with accurate sizes, locations and shapes. The proposed system has the potential for further investigation of concealed MFOs under clothing in the future, which has the potential applications in on body concealed weapon detection at security sites or MFOs detection in children

    Experimental Synthetic Aperture Radar with Dynamic Metasurfaces

    Full text link
    We investigate the use of a dynamic metasurface as the transmitting antenna for a synthetic aperture radar (SAR) imaging system. The dynamic metasurface consists of a one-dimensional microstrip waveguide with complementary electric resonator (cELC) elements patterned into the upper conductor. Integrated into each of the cELCs are two diodes that can be used to shift each cELC resonance out of band with an applied voltage. The aperture is designed to operate at K band frequencies (17.5 to 20.3 GHz), with a bandwidth of 2.8 GHz. We experimentally demonstrate imaging with a fabricated metasurface aperture using existing SAR modalities, showing image quality comparable to traditional antennas. The agility of this aperture allows it to operate in spotlight and stripmap SAR modes, as well as in a third modality inspired by computational imaging strategies. We describe its operation in detail, demonstrate high-quality imaging in both 2D and 3D, and examine various trade-offs governing the integration of dynamic metasurfaces in future SAR imaging platforms

    Microwave imaging for security applications

    Get PDF
    Microwave imaging technologies have been widely researched in the biomedical field where they rely on the imaging of dielectric properties of tissues. Healthy and malignant tissue have different dielectric properties in the microwave frequency region, therefore, the dielectric properties of a human body’s tissues are generally different from other contraband materials. Consequently, dielectric data analysis techniques using microwave signals can be used to distinguish between different types of materials that could be hidden in the human body, such as explosives or drugs. Other concerns raised about these particular imaging systems were how to build them cost effectively, with less radiation emissions, and to overcome the disadvantages of X-ray imaging systems. The key challenge in security applications using microwave imaging is the image reconstruction methods adopted in order to gain a clear image of illuminated objects inside the human body or underneath clothing. This thesis will discuss in detail how microwave tomography scanning could overcome the challenge of imaging objects concealed in the human body, and prove the concept of imaging inside a human body using image reconstruction algorithms such as Radon transformation image reconstruction. Also, this thesis presents subspace based TR-MUSIC algorithms for point targets and extended targets. The algorithm is based on the collection of the dominant response matrix reflected by targets at the transducers in homogenous backgrounds, and uses the MUSIC function to image it. Lumerical FDTD solution is used to model the transducers and the objects to process its response matrix data in Matlab. Clear images of metal dielectric properties have been clearly detected. Security management understanding in airports is also discussed to use new scanning technologies such as microwave imaging in the future.The main contribution of this reseach is that microwave was proved to be able to image and detect illegal objects embedded or implanted inside human body

    Three-Dimensional Microwave Imaging for Concealed Weapon Detection Using Range Stacking Technique

    Get PDF
    Three-dimensional (3D) microwave imaging has been proven to be well suited for concealed weapon detection application. For the 3D image reconstruction under two-dimensional (2D) planar aperture condition, most of current imaging algorithms focus on decomposing the 3D free space Green function by exploiting the stationary phase and, consequently, the accuracy of the final imagery is obtained at a sacrifice of computational complexity due to the need of interpolation. In this paper, from an alternative viewpoint, we propose a novel interpolation-free imaging algorithm based on wavefront reconstruction theory. The algorithm is an extension of the 2D range stacking algorithm (RSA) with the advantages of low computational cost and high precision. The algorithm uses different reference signal spectrums at different range bins and then forms the target functions at desired range bin by a concise coherent summation. Several practical issues such as the propagation loss compensation, wavefront reconstruction, and aliasing mitigating are also considered. The sampling criterion and the achievable resolutions for the proposed algorithm are also derived. Finally, the proposed method is validated through extensive computer simulations and real-field experiments. The results show that accurate 3D image can be generated at a very high speed by utilizing the proposed algorithm
    corecore