7,296 research outputs found

    An Open System for Social Computation

    Get PDF
    Part of the power of social computation comes from using the collective intelligence of humans to tame the aggregate uncertainty of (otherwise) low veracity data obtained from human and automated sources. We have witnessed a surge in development of social computing systems but, ironically, there have been few attempts to generalise across this activity so that creation of the underlying mechanisms themselves can be made more social. We describe a method for achieving this by standardising patterns of social computation via lightweight formal specifications (we call these social artifacts) that can be connected to existing internet architectures via a single model of computation. Upon this framework we build a mechanism for extracting provenance meta-data across social computations

    An Open System for Social Computation

    No full text
    Part of the power of social computation comes from using the collective intelligence of humans to tame the aggregate uncertainty of (otherwise) low veracity data obtained from human and automated sources. We have witnessed a surge in development of social computing systems but, ironically, there have been few attempts to generalise across this activity so that creation of the underlying mechanisms themselves can be made more social. We describe a method for achieving this by standardising patterns of social computation via lightweight formal specifications (we call these social artifacts) that can be connected to existing internet architectures via a single model of computation. Upon this framework we build a mechanism for extracting provenance meta-data across social computations

    Optimization in Knowledge-Intensive Crowdsourcing

    Full text link
    We present SmartCrowd, a framework for optimizing collaborative knowledge-intensive crowdsourcing. SmartCrowd distinguishes itself by accounting for human factors in the process of assigning tasks to workers. Human factors designate workers' expertise in different skills, their expected minimum wage, and their availability. In SmartCrowd, we formulate task assignment as an optimization problem, and rely on pre-indexing workers and maintaining the indexes adaptively, in such a way that the task assignment process gets optimized both qualitatively, and computation time-wise. We present rigorous theoretical analyses of the optimization problem and propose optimal and approximation algorithms. We finally perform extensive performance and quality experiments using real and synthetic data to demonstrate that adaptive indexing in SmartCrowd is necessary to achieve efficient high quality task assignment.Comment: 12 page
    corecore