2 research outputs found

    Contactless Haptic Display Through Magnetic Field Control

    Full text link
    Haptic rendering enables people to touch, perceive, and manipulate virtual objects in a virtual environment. Using six cascaded identical hollow disk electromagnets and a small permanent magnet attached to an operator's finger, this paper proposes and develops an untethered haptic interface through magnetic field control. The concentric hole inside the six cascaded electromagnets provides the workspace, where the 3D position of the permanent magnet is tracked with a Microsoft Kinect sensor. The driving currents of six cascaded electromagnets are calculated in real-time for generating the desired magnetic force. Offline data from an FEA (finite element analysis) based simulation, determines the relationship between the magnetic force, the driving currents, and the position of the permanent magnet. A set of experiments including the virtual object recognition experiment, the virtual surface identification experiment, and the user perception evaluation experiment were conducted to demonstrate the proposed system, where Microsoft HoloLens holographic glasses are used for visual rendering. The proposed magnetic haptic display leads to an untethered and non-contact interface for natural haptic rendering applications, which overcomes the constraints of mechanical linkages in tool-based traditional haptic devices

    A target grabbing strategy for telerobot based on improved stiffness display device

    No full text
    Most target grabbing problems have been dealt with by computer vision system, however, computer vision method is not always enough when it comes to the precision contact grabbing problems during the teleoperation process, and need to be combined with the stiffness display to provide more effective information to the operator on the remote side. Therefore, in this paper a more portable stiffness display device with a small volume and extended function is developed based on our previous work. A new static load calibration of the improved stiffness display device is performed to detect its accuracy, and the relationship between the stiffness and the position is given. An effective target grabbing strategy is presented to help operator on the remote side to judge and control and the target is classified by multi-class SVM (supporter vector machine). The teleoperation system is established to test and verify the feasibility. A special experiment is designed and the results demonstrate that the improved stiffness display device could greatly help operator on the remote side control the telerobot to grab target and the target grabbing strategy is effective
    corecore