1,185 research outputs found

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Slow Frequency Hopping Assisted MC DS-CDMA using Large Area Synchronised Spreading Sequences

    No full text
    The family of Multi-Carrier Direct-Sequence CDMA (MC DS- CDMA) systems exhibits numerous attractive properties, which render them attractive candidates for next-generation wireless communications. We demonstrate that spreading codes exhibiting a so-called interference-free window (IFW) are capable of outperforming classic spreading codes, when the interfering multi-user and multipath components arrive within this IFW. The best possible quasi-synchronous timing of the spreading sequences has to be adjusted with the aid of accurate adaptive timing advance control, which has to be significantly more accurate than that used in the lower-bit-rate second-generation GSM system. Fortunately, the IFW duration may be extended with the advent of multi-carrier DS-CDMA proportionately to the number of subcarriers. Hence the resultant MC DS-CDMA system is capable of exhibiting a near-single-user performance without employing a multi-user detector. A deficiency of the resultant system is that the number of spreading codes exhibiting a certain IFW is limited and so is the IFW duration. This contribution sets out to mitigate the above-mentioned shortcomings so that when the users' delays are in the range of the IFW, we separate them with the aid of the unique, user-specific LAS spreading codes. By contrast, when the users roam at a high distance from the base-station and hence their received signal arrive outside the range of the IFW, we separate them using their unique frequency hopping patterns

    Initial synchronisation of wideband and UWB direct sequence systems: single- and multiple-antenna aided solutions

    No full text
    This survey guides the reader through the open literature on the principle of initial synchronisation in single-antenna-assisted single- and multi-carrier Code Division Multiple Access (CDMA) as well as Direct Sequence-Ultra WideBand (DS-UWB) systems, with special emphasis on the DownLink (DL). There is a paucity of up-to-date surveys and review articles on initial synchronization solutions for MIMO-aided and cooperative systems - even though there is a plethora of papers on both MIMOs and on cooperative systems, which assume perfect synchronization. Hence this paper aims to ?ll the related gap in the literature

    Time-Hopping Multicarrier Code-Division Multiple-Access

    No full text
    A time-hopping multicarrier code-division multiple-access (TH/MC-CDMA) scheme is proposed and investigated. In the proposed TH/MC-CDMA each information symbol is transmitted by a number of time-domain pulses with each time-domain pulse modulating a subcarrier. The transmitted information at the receiver is extracted from one of the, say MM, possible time-slot positions, i.e., assuming that MM-ary pulse position modulation is employed. Specifically, in this contribution we concentrate on the scenarios such as system design, power spectral density (PSD) and single-user based signal detection. The error performance of the TH/MC-CDMA system is investigated, when each subcarrier signal experiences flat Nakagami-mm fading in addition to additive white Gaussian noise (AWGN). According to our analysis and results, it can be shown that the TH/MC-CDMA signal is capable of providing a near ideal PSD, which is flat over the system bandwidth available, while decreases rapidly beyond that bandwidth. Explicitly, signals having this type of PSD is beneficial to both broadband and ultra-wide bandwidth (UWB) communications. Furthermore, our results show that, when optimum user address codes are employed, the single-user detector considered is near-far resistant, provided that the number of users supported by the system is lower than the number of subcarriers used for conveying an information symbol

    MC-CDMA aided multi-user space-time shift keying in wideband channels

    No full text
    In this paper, we propose multi-carrier code division multiple access (MC-CDMA)-aided space-time shift keying (STSK) for mitigating the performance erosion of the classic STSK scheme in dispersive channels, while supporting multiple users. The codewords generated by the STSK scheme are appropriately spread in frequency-domain (FD) and transmitted over a number of parallel frequency-?at subchannels. We propose a new receiver architecture amalgamating the single-stream maximum-likelihood (ML) detector of the STSK system and the multiuser detector (MUD) of the MC-CDMA system. The performance of the proposed scheme is evaluated for transmission over frequency-selective channels in both uncoded and channel-coded scenarios. The results of our simulations demonstrate that the proposed scheme overcomes the channel impairments imposed by wideband channels and exhibits near-capacity performance in a channel-coded scenario

    Layered Steered Space–Time-Spreading-Aided Generalized MC DS-CDMA

    No full text
    Abstract—We present a novel trifunctional multiple-input– multiple-output (MIMO) scheme that intrinsically amalgamates space–time spreading (STS) to achieve a diversity gain and a Vertical Bell Labs layered space–time (V-BLAST) scheme to attain a multiplexing gain in the context of generalized multicarrier direct-sequence code-division multiple access (MC DS-CDMA), as well as beamforming. Furthermore, the proposed system employs both time- and frequency-domain spreading to increase the number of users, which is also combined with a user-grouping technique to reduce the effects of multiuser interference
    corecore