142,838 research outputs found

    A Survey on Deep Semi-supervised Learning

    Full text link
    Deep semi-supervised learning is a fast-growing field with a range of practical applications. This paper provides a comprehensive survey on both fundamentals and recent advances in deep semi-supervised learning methods from model design perspectives and unsupervised loss functions. We first present a taxonomy for deep semi-supervised learning that categorizes existing methods, including deep generative methods, consistency regularization methods, graph-based methods, pseudo-labeling methods, and hybrid methods. Then we offer a detailed comparison of these methods in terms of the type of losses, contributions, and architecture differences. In addition to the past few years' progress, we further discuss some shortcomings of existing methods and provide some tentative heuristic solutions for solving these open problems.Comment: 24 pages, 6 figure

    A Survey on Semi-Supervised Learning for Delayed Partially Labelled Data Streams

    Full text link
    Unlabelled data appear in many domains and are particularly relevant to streaming applications, where even though data is abundant, labelled data is rare. To address the learning problems associated with such data, one can ignore the unlabelled data and focus only on the labelled data (supervised learning); use the labelled data and attempt to leverage the unlabelled data (semi-supervised learning); or assume some labels will be available on request (active learning). The first approach is the simplest, yet the amount of labelled data available will limit the predictive performance. The second relies on finding and exploiting the underlying characteristics of the data distribution. The third depends on an external agent to provide the required labels in a timely fashion. This survey pays special attention to methods that leverage unlabelled data in a semi-supervised setting. We also discuss the delayed labelling issue, which impacts both fully supervised and semi-supervised methods. We propose a unified problem setting, discuss the learning guarantees and existing methods, explain the differences between related problem settings. Finally, we review the current benchmarking practices and propose adaptations to enhance them

    Learning with Limited Annotations: A Survey on Deep Semi-Supervised Learning for Medical Image Segmentation

    Full text link
    Medical image segmentation is a fundamental and critical step in many image-guided clinical approaches. Recent success of deep learning-based segmentation methods usually relies on a large amount of labeled data, which is particularly difficult and costly to obtain especially in the medical imaging domain where only experts can provide reliable and accurate annotations. Semi-supervised learning has emerged as an appealing strategy and been widely applied to medical image segmentation tasks to train deep models with limited annotations. In this paper, we present a comprehensive review of recently proposed semi-supervised learning methods for medical image segmentation and summarized both the technical novelties and empirical results. Furthermore, we analyze and discuss the limitations and several unsolved problems of existing approaches. We hope this review could inspire the research community to explore solutions for this challenge and further promote the developments in medical image segmentation field

    CONSS: Contrastive Learning Approach for Semi-Supervised Seismic Facies Classification

    Full text link
    Recently, seismic facies classification based on convolutional neural networks (CNN) has garnered significant research interest. However, existing CNN-based supervised learning approaches necessitate massive labeled data. Labeling is laborious and time-consuming, particularly for 3D seismic data volumes. To overcome this challenge, we propose a semi-supervised method based on pixel-level contrastive learning, termed CONSS, which can efficiently identify seismic facies using only 1% of the original annotations. Furthermore, the absence of a unified data division and standardized metrics hinders the fair comparison of various facies classification approaches. To this end, we develop an objective benchmark for the evaluation of semi-supervised methods, including self-training, consistency regularization, and the proposed CONSS. Our benchmark is publicly available to enable researchers to objectively compare different approaches. Experimental results demonstrate that our approach achieves state-of-the-art performance on the F3 survey

    Label-efficient Time Series Representation Learning: A Review

    Full text link
    The scarcity of labeled data is one of the main challenges of applying deep learning models on time series data in the real world. Therefore, several approaches, e.g., transfer learning, self-supervised learning, and semi-supervised learning, have been recently developed to promote the learning capability of deep learning models from the limited time series labels. In this survey, for the first time, we provide a novel taxonomy to categorize existing approaches that address the scarcity of labeled data problem in time series data based on their dependency on external data sources. Moreover, we present a review of the recent advances in each approach and conclude the limitations of the current works and provide future directions that could yield better progress in the field.Comment: Under Revie

    Optimizing machine learning methods to discover strong gravitational lenses in the Deep Lens Survey

    Full text link
    Machine learning models can greatly improve the search for strong gravitational lenses in imaging surveys by reducing the amount of human inspection required. In this work, we test the performance of supervised, semi-supervised, and unsupervised learning algorithms trained with the ResNetV2 neural network architecture on their ability to efficiently find strong gravitational lenses in the Deep Lens Survey (DLS). We use galaxy images from the survey, combined with simulated lensed sources, as labeled data in our training datasets. We find that models using semi-supervised learning along with data augmentations (transformations applied to an image during training, e.g., rotation) and Generative Adversarial Network (GAN) generated images yield the best performance. They offer 5--10 times better precision across all recall values compared to supervised algorithms. Applying the best performing models to the full 20 deg2^2 DLS survey, we find 3 Grade-A lens candidates within the top 17 image predictions from the model. This increases to 9 Grade-A and 13 Grade-B candidates when 11% (∼2500\sim2500 images) of the model predictions are visually inspected. This is ≳10×\gtrsim10\times the sky density of lens candidates compared to current shallower wide-area surveys (such as the Dark Energy Survey), indicating a trove of lenses awaiting discovery in upcoming deeper all-sky surveys. These results suggest that pipelines tasked with finding strong lens systems can be highly efficient, minimizing human effort. We additionally report spectroscopic confirmation of the lensing nature of two Grade-A candidates identified by our model, further validating our methods.Comment: 23 pages, 15 figures (including appendix), published in MNRA
    • …
    corecore