18,605 research outputs found

    Understanding Security Requirements and Challenges in Internet of Things (IoTs): A Review

    Full text link
    Internet of Things (IoT) is realized by the idea of free flow of information amongst various low power embedded devices that use Internet to communicate with one another. It is predicted that the IoT will be widely deployed and it will find applicability in various domains of life. Demands of IoT have lately attracted huge attention and organizations are excited about the business value of the data that will be generated by the IoT paradigm. On the other hand, IoT have various security and privacy concerns for the end users that limit its proliferation. In this paper we have identified, categorized and discussed various security challenges and state of the art efforts to resolve these challenges

    A Survey on Mobile Edge Networks: Convergence of Computing, Caching and Communications

    Full text link
    As the explosive growth of smart devices and the advent of many new applications, traffic volume has been growing exponentially. The traditional centralized network architecture cannot accommodate such user demands due to heavy burden on the backhaul links and long latency. Therefore, new architectures which bring network functions and contents to the network edge are proposed, i.e., mobile edge computing and caching. Mobile edge networks provide cloud computing and caching capabilities at the edge of cellular networks. In this survey, we make an exhaustive review on the state-of-the-art research efforts on mobile edge networks. We first give an overview of mobile edge networks including definition, architecture and advantages. Next, a comprehensive survey of issues on computing, caching and communication techniques at the network edge is presented respectively. The applications and use cases of mobile edge networks are discussed. Subsequently, the key enablers of mobile edge networks such as cloud technology, SDN/NFV and smart devices are discussed. Finally, open research challenges and future directions are presented as well

    Wireless Sensor Networks Security: State of the Art

    Full text link
    Wireless sensor networks (WSNs) have become one of the main research topics in computer science in recent years, primarily owing to the significant challenges imposed by these networks and their immense applicability. WSNs have been employed for a diverse group of monitoring applications, with emphasis on industrial control scenarios, traffic management, rescue operations, public safety, residential automation, weather forecasting, and several other fields. These networks constitute resource-constrained sensors for which security and energy efficiency are essential concerns. In this context, many research efforts have been focused on increasing the security levels and reducing the energy consumption in the network. This paper provides a state-of-the-art survey of recent works in this direction, proposing a new taxonomy for the security attacks and requirements of WSNs.Comment: 11 pages, 3 Figures, 2 Table

    Common Metrics for Analyzing, Developing and Managing Telecommunication Networks

    Full text link
    The metrics play increasingly fundamental role in the design, development, deployment and operation of telecommunication systems. Despite their importance, the studies of metrics are usually limited to a narrow area or a well-defined objective. Our study aims to more broadly survey the metrics that are commonly used for analyzing, developing and managing telecommunication networks in order to facilitate understanding of the current metrics landscape. The metrics are simple abstractions of systems, and they directly influence how the systems are perceived by different stakeholders. However, defining and using metrics for telecommunication systems with ever increasing complexity is a complicated matter which has not been so far systematically and comprehensively considered in the literature. The common metrics sources are identified, and how the metrics are used and selected is discussed. The most commonly used metrics for telecommunication systems are categorized and presented as energy and power metrics, quality-of-service metrics, quality-of-experience metrics, security metrics, and reliability and resilience metrics. Finally, the research directions and recommendations how the metrics can evolve, and be defined and used more effectively are outlined.Comment: 5 figures, 18 table

    A Survey on Software-Defined VANETs: Benefits, Challenges, and Future Directions

    Full text link
    The evolving of Fifth Generation (5G) networks isbecoming more readily available as a major driver of the growthof new applications and business models. Vehicular Ad hocNetworks (VANETs) and Software Defined Networking (SDN)represent the key enablers of 5G technology with the developmentof next generation intelligent vehicular networks and applica-tions. In recent years, researchers have focused on the integrationof SDN and VANET, and look at different topics related to thearchitecture, the benefits of software-defined VANET servicesand the new functionalities to adapt them. However, securityand robustness of the complete architecture is still questionableand have been largely negleted. Moreover, the deployment andintegration of novel entities and several architectural componentsdrive new security threats and vulnerabilities.In this paper, first we survey the state-of-the-art SDN basedVehicular ad-hoc Network (SDVN) architectures for their net-working infrastructure design, functionalities, benefits, and chal-lenges. Then we discuss these SDVN architectures against majorsecurity threats that violate the key security services such asavailability, confidentiality, authentication, and data integrity.We also propose different countermeasures to these threats.Finally, we discuss the lessons learned with the directions offuture research work towards provisioning stringent security andprivacy solutions in future SDVN architectures. To the best of ourknowledge, this is the first comprehensive work that presents sucha survey and analysis on SDVNs in the era of future generationnetworks (e.g., 5G, and Information centric networking) andapplications (e.g., intelligent transportation system, and IoT-enabled advertising in VANETs).Comment: 17 pages, 2 figure

    Security for 4G and 5G Cellular Networks: A Survey of Existing Authentication and Privacy-preserving Schemes

    Full text link
    This paper presents a comprehensive survey of existing authentication and privacy-preserving schemes for 4G and 5G cellular networks. We start by providing an overview of existing surveys that deal with 4G and 5G communications, applications, standardization, and security. Then, we give a classification of threat models in 4G and 5G cellular networks in four categories, including, attacks against privacy, attacks against integrity, attacks against availability, and attacks against authentication. We also provide a classification of countermeasures into three types of categories, including, cryptography methods, humans factors, and intrusion detection methods. The countermeasures and informal and formal security analysis techniques used by the authentication and privacy preserving schemes are summarized in form of tables. Based on the categorization of the authentication and privacy models, we classify these schemes in seven types, including, handover authentication with privacy, mutual authentication with privacy, RFID authentication with privacy, deniable authentication with privacy, authentication with mutual anonymity, authentication and key agreement with privacy, and three-factor authentication with privacy. In addition, we provide a taxonomy and comparison of authentication and privacy-preserving schemes for 4G and 5G cellular networks in form of tables. Based on the current survey, several recommendations for further research are discussed at the end of this paper.Comment: 24 pages, 14 figure

    Internet of Things: Survey on Security and Privacy

    Full text link
    The Internet of Things (IoT) is intended for ubiquitous connectivity among different entities or "things". While its purpose is to provide effective and efficient solutions, security of the devices and network is a challenging issue. The number of devices connected along with the ad-hoc nature of the system further exacerbates the situation. Therefore, security and privacy has emerged as a significant challenge for the IoT. In this paper,we aim to provide a thorough survey related to the privacy and security challenges of the IoT. This document addresses these challenges from the perspective of technologies and architecture used. This work focuses also in IoT intrinsic vulnerabilities as well as the security challenges of various layers based on the security principles of data confidentiality, integrity and availability. This survey analyzes articles published for the IoT at the time and relates it to the security conjuncture of the field and its projection to the future.Comment: 16 pages, 3 figure

    A study of research trends and issues in wireless ad hoc networks

    Full text link
    Ad hoc network enables network creation on the fly without support of any predefined infrastructure. The spontaneous erection of networks in anytime and anywhere fashion enables development of various novel applications based on ad hoc networks. However, at the same ad hoc network presents several new challenges. Different research proposals have came forward to resolve these challenges. This chapter provides a survey of current issues, solutions and research trends in wireless ad hoc network. Even though various surveys are already available on the topic, rapid developments in recent years call for an updated account on this topic. The chapter has been organized as follows. In the first part of the chapter, various ad hoc network's issues arising at different layers of TCP/IP protocol stack are presented. An overview of research proposals to address each of these issues is also provided. The second part of the chapter investigates various emerging models of ad hoc networks, discusses their distinctive properties and highlights various research issues arising due to these properties. We specifically provide discussion on ad hoc grids, ad hoc clouds, wireless mesh networks and cognitive radio ad hoc networks. The chapter ends with presenting summary of the current research on ad hoc network, ignored research areas and directions for further research

    A Survey on Legacy and Emerging Technologies for Public Safety Communications

    Full text link
    Effective emergency and natural disaster management depend on the efficient mission-critical voice and data communication between first responders and victims. Land Mobile Radio System (LMRS) is a legacy narrowband technology used for critical voice communications with limited use for data applications. Recently Long Term Evolution (LTE) emerged as a broadband communication technology that has a potential to transform the capabilities of public safety technologies by providing broadband, ubiquitous, and mission-critical voice and data support. For example, in the United States, FirstNet is building a nationwide coast-to-coast public safety network based of LTE broadband technology. This paper presents a comparative survey of legacy and the LTE-based public safety networks, and discusses the LMRS-LTE convergence as well as mission-critical push-to-talk over LTE. A simulation study of LMRS and LTE band class 14 technologies is provided using the NS-3 open source tool. An experimental study of APCO-25 and LTE band class 14 is also conducted using software-defined radio, to enhance the understanding of the public safety systems. Finally, emerging technologies that may have strong potential for use in public safety networks are reviewed.Comment: Accepted at IEEE Communications Surveys and Tutorial

    Security in Mobile Edge Caching with Reinforcement Learning

    Full text link
    Mobile edge computing usually uses cache to support multimedia contents in 5G mobile Internet to reduce the computing overhead and latency. Mobile edge caching (MEC) systems are vulnerable to various attacks such as denial of service attacks and rogue edge attacks. This article investigates the attack models in MEC systems, focusing on both the mobile offloading and the caching procedures. In this paper, we propose security solutions that apply reinforcement learning (RL) techniques to provide secure offloading to the edge nodes against jamming attacks. We also present light-weight authentication and secure collaborative caching schemes to protect data privacy. We evaluate the performance of the RL-based security solution for mobile edge caching and discuss the challenges that need to be addressed in the future
    • …
    corecore