30,362 research outputs found

    Unsupervised feature learning by augmenting single images

    Full text link
    When deep learning is applied to visual object recognition, data augmentation is often used to generate additional training data without extra labeling cost. It helps to reduce overfitting and increase the performance of the algorithm. In this paper we investigate if it is possible to use data augmentation as the main component of an unsupervised feature learning architecture. To that end we sample a set of random image patches and declare each of them to be a separate single-image surrogate class. We then extend these trivial one-element classes by applying a variety of transformations to the initial 'seed' patches. Finally we train a convolutional neural network to discriminate between these surrogate classes. The feature representation learned by the network can then be used in various vision tasks. We find that this simple feature learning algorithm is surprisingly successful, achieving competitive classification results on several popular vision datasets (STL-10, CIFAR-10, Caltech-101).Comment: ICLR 2014 workshop track submission (7 pages, 4 figures, 1 table

    Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition: A Problem-Oriented Perspective

    Get PDF
    This paper takes a problem-oriented perspective and presents a comprehensive review of transfer learning methods, both shallow and deep, for cross-dataset visual recognition. Specifically, it categorises the cross-dataset recognition into seventeen problems based on a set of carefully chosen data and label attributes. Such a problem-oriented taxonomy has allowed us to examine how different transfer learning approaches tackle each problem and how well each problem has been researched to date. The comprehensive problem-oriented review of the advances in transfer learning with respect to the problem has not only revealed the challenges in transfer learning for visual recognition, but also the problems (e.g. eight of the seventeen problems) that have been scarcely studied. This survey not only presents an up-to-date technical review for researchers, but also a systematic approach and a reference for a machine learning practitioner to categorise a real problem and to look up for a possible solution accordingly

    Slow and steady feature analysis: higher order temporal coherence in video

    Full text link
    How can unlabeled video augment visual learning? Existing methods perform "slow" feature analysis, encouraging the representations of temporally close frames to exhibit only small differences. While this standard approach captures the fact that high-level visual signals change slowly over time, it fails to capture *how* the visual content changes. We propose to generalize slow feature analysis to "steady" feature analysis. The key idea is to impose a prior that higher order derivatives in the learned feature space must be small. To this end, we train a convolutional neural network with a regularizer on tuples of sequential frames from unlabeled video. It encourages feature changes over time to be smooth, i.e., similar to the most recent changes. Using five diverse datasets, including unlabeled YouTube and KITTI videos, we demonstrate our method's impact on object, scene, and action recognition tasks. We further show that our features learned from unlabeled video can even surpass a standard heavily supervised pretraining approach.Comment: in Computer Vision and Pattern Recognition (CVPR) 2016, Las Vegas, NV, June 201
    • …
    corecore