2 research outputs found

    Subject-centered multi-view feature fusion for neuroimaging retrieval and classification

    Get PDF
    Multi-View neuroimaging retrieval and classification play an important role in computer-aided-diagnosis of brain disorders, as multi-view features could provide more insights of the disease pathology and potentially lead to more accurate diagnosis than single-view features. The large inter-feature and inter-subject variations make the multi-view neuroimaging analysis a challenging task. Many multi-view or multi-modal feature fusion methods have been proposed to reduce the impact of inter-feature variations in neuroimaging data. However, there is not much in-depth work focusing on the inter-subject variations. In this study, we propose a subject-centered multi-view feature fusion method for neuroimaging retrieval and classification based on the propagation graph fusion (PGF) algorithm. Two main advantages of the proposed method are: 1) it evaluates the query online and adaptively reshapes the connections between subjects according to the query; 2) it measures the affinity of the query to the subjects using the subject-centered affinity matrices, which can be easily combined and efficiently solved. Evaluated using a public accessible neuroimaging database, our algorithm outperforms the state-of-the-art methods in retrieval and achieves comparable performance in classification

    Multi-Phase Feature Representation Learning for Neurodegenerative Disease Diagnosis

    Get PDF
    Feature learning with high dimensional neuroimaging features has been explored for the applications on neurodegenerative diseases. Low-dimensional biomarkers, such as mental status test scores and cerebrospinal fluid level, are essential in clinical diagnosis of neurological disorders, because they could be simple and effective for the clinicians to assess the disorder’s progression and severity. Rather than only using the low-dimensional biomarkers as inputs for decision making systems, we believe that such low-dimensional biomarkers can be used for enhancing the feature learning pipeline. In this study, we proposed a novel feature representation learning framework, Multi-Phase Feature Representation (MPFR), with low-dimensional biomarkers embedded. MPFR learns high-level neuroimaging features by extracting the associations between the low-dimensional biomarkers and the high-dimensional neuroimaging features with a deep neural network. We validated the proposed framework using the Mini-Mental-State-Examination (MMSE) scores as a low-dimensional biomarker and multi-modal neuroimaging data as the high-dimensional neuroimaging features from the ADNI baseline cohort. The proposed approach outperformed the original neural network in both binary and ternary Alzheimer’s disease classification tasks
    corecore