907 research outputs found

    A Micro Mobile Robot with Suction Cups in the Abdominal Cavity for NOTES

    Get PDF

    METHODS, SYSTEMS, AND DEVICES FOR SURGICAL ACCESS AND PROCEDURES

    Get PDF
    The embodiments disclosed herein relate to various medical device components, including components that can be incorporated into robotic and/or in vivo medical devices. Certain embodiments include various actuation system embodiments, including fluid actuation systems, drive train actuation systems, and motorless actuation systems. Additional embodiments include a reversibly lockable tube that can provide access for a medical device to a patient\u27s cavity and further provides a reversible rigidity or stability during operation of the device. Further embodiments include various operational components for medical devices, including medical device arm mechanisms that have both axial and rotational movement while maintaining a relatively compact structure. medical device winch components, medical device biopsy/stapler/clamp mechanisms, and medical device adjustable focus mechanisms

    Design, development and testing of miniature instruments for flexible endoscopy

    Get PDF
    This thesis describes the design and development of single-stitch and chain-stitch endoscopic sewing machines for flexible endoscopy as well as devices and methods for tying knots and cutting thread at flexible endoscopy. The work also includes a comparative study of clipping methods for endoscopic haemostasis and a feasibility study of a wireless endoscope that might allow images to be transmitted from sites in the gastrointestinal tract without wires, cables or fibre optic bundles. The development and testing of simple prototypes of such an endoscope are reported. Chapter 1 reviews the surgical instruments and methods used for tissue approximation in general surgery, laparoscopic surgery and flexible endoscopic surgery. The design of existing, conventional sewing machines and the ways in which they form stitches are also considered. In Chapter 2, a comparative study of clipping methods for endoscopic haemostasis is reported. In Chapter 3, the design and development of new single-stitch endoscopic sewing machines are described, together with data on the clinical use of one of these machines. In Chapter 4, studies of ways of improving endoscopic vision during endoscopic sewing and the effects of needle size and the size and shape of the suction cavity are reported. In Chapter 5, the design and development of novel chain-stitch endoscopic sewing machines are reported. These make use of two new catch mechanisms. In Chapter 6, knot tying at flexible endoscopy is considered, and a number of new devices and methods are described and clinical results reported. In Chapter 7, cutting thread at flexible endoscopy is described. Several new endoscopic thread cutting devices and methods together with results are presented. In Chapter 8, a feasibility study of wireless endoscopy is reported. The study includes tests of the concept of wireless endoscopes made using prototypes constructed from miniature CCD cameras and microwave transmitters. Finally, some concluding remarks relating to the work described in this thesis are given

    Magnetic Surgical Instruments for Robotic Abdominal Surgery.

    Get PDF
    This review looks at the implementation of magnetic-based approaches in surgical instruments for abdominal surgeries. As abdominal surgical techniques advance toward minimizing surgical trauma, surgical instruments are enhanced to support such an objective through the exploration of magnetic-based systems. With this design approach, surgical devices are given the capabilities to be fully inserted intraabdominally to achieve access to all abdominal quadrants, without the conventional rigid link connection with the external unit. The variety of intraabdominal surgical devices are anchored, guided, and actuated by external units, with power and torque transmitted across the abdominal wall through magnetic linkage. This addresses many constraints encountered by conventional laparoscopic tools, such as loss of triangulation, fulcrum effect, and loss/lack of dexterity for surgical tasks. Design requirements of clinical considerations to aid the successful development of magnetic surgical instruments, are also discussed

    Current and novel percutaneous epicardial access techniques for electrophysiological interventions: A comparison of procedural success and safety

    Get PDF
    Accessing the pericardial space safely and efficiently is an important skill for interventional cardiac electrophysiologist. With the increased recognition of the complexity of the 3-dimensional arrhythmogenic substrate due to advances in imaging and mapping technologies there has been an expansion of epicardial procedures in recent years. Equally, minimally invasive implantation of epicardial pacing, cardiac resynchronization, or defibrillation leads is expanding in specific patients where transvenous systems are contraindicated or their long term sequelae should be ideally avoided. Selective delivery of intrapericardial pharmacological antiarrhythmic therapy is yet another potential indication, albeit still investigational. The expanding indications for percutaneous epicardial procedures is contrasted by the still substantial risk and challenges associated with accessing the pericardial space. Myocardial perforation, coronary artery laceration, and damage to the surrounding organs are all recognized and feared complications. A number of innovative epicardial access techniques have been proposed to overcome the difficulties and risks of traditional dry subxiphoid punctures and may allow for more widespread use of epicardial access in the future. We review 10 different established and novel subxiphoidal epicardial access techniques describing procedural success rates, safety profile and overall experience. The technical aspects as well as access times and costs for extra equipment will be reviewed. Finally, an outlook of reported preclinical techniques awaiting in-human feasibility studies is provided

    Smart Camera Robotic Assistant for Laparoscopic Surgery

    Get PDF
    The cognitive architecture also includes learning mechanisms to adapt the behavior of the robot to the different ways of working of surgeons, and to improve the robot behavior through experience, in a similar way as a human assistant would do. The theoretical concepts of this dissertation have been validated both through in-vitro experimentation in the labs of medical robotics of the University of Malaga and through in-vivo experimentation with pigs in the IACE Center (Instituto Andaluz de Cirugía Experimental), performed by expert surgeons.In the last decades, laparoscopic surgery has become a daily practice in operating rooms worldwide, which evolution is tending towards less invasive techniques. In this scenario, robotics has found a wide field of application, from slave robotic systems that replicate the movements of the surgeon to autonomous robots able to assist the surgeon in certain maneuvers or to perform autonomous surgical tasks. However, these systems require the direct supervision of the surgeon, and its capacity of making decisions and adapting to dynamic environments is very limited. This PhD dissertation presents the design and implementation of a smart camera robotic assistant to collaborate with the surgeon in a real surgical environment. First, it presents the design of a novel camera robotic assistant able to augment the capacities of current vision systems. This robotic assistant is based on an intra-abdominal camera robot, which is completely inserted into the patient’s abdomen and it can be freely moved along the abdominal cavity by means of magnetic interaction with an external magnet. To provide the camera with the autonomy of motion, the external magnet is coupled to the end effector of a robotic arm, which controls the shift of the camera robot along the abdominal wall. This way, the robotic assistant proposed in this dissertation has six degrees of freedom, which allow providing a wider field of view compared to the traditional vision systems, and also to have different perspectives of the operating area. On the other hand, the intelligence of the system is based on a cognitive architecture specially designed for autonomous collaboration with the surgeon in real surgical environments. The proposed architecture simulates the behavior of a human assistant, with a natural and intuitive human-robot interface for the communication between the robot and the surgeon

    LOCAL CONTROL ROBOTIC SURGICAL DEVICES AND RELATED METHODS

    Get PDF
    The various robotic medical devices include robotic devices that are disposed within a body cavity and positioned using a support component disposed through an orifice or opening in the body cavity. Additional embodiments relate to devices having arms coupled to a device body wherein the device has a minimal profile such that the device can be easily inserted through smaller incisions in comparison to other devices without such a small profile. Further embodiments relate to methods of operating the above devices

    Development of An In Vivo Robotic Camera for Dexterous Manipulation and Clear Imaging

    Get PDF
    Minimally invasive surgeriy (MIS) techniques are becoming more popular as replacements for traditional open surgeries. These methods benefit patients with lowering blood loss and post-operative pain, reducing recovery period and hospital stay time, decreasing surgical area scarring and cosmetic issues, and lessening the treatment costs, hence greater patient satisfaction would be earned. Manipulating surgical instruments from outside of abdomen and performing surgery needs precise hand-eye coordination which is provided by insertable cameras. The traditional MIS insertable cameras suffer from port complexity and reduced manipulation dexterity, which leads to defection in Hand-eye coordination and surgical flow. Fully insertable robotic camera systems emerged as a promising solution in MIS. Implementing robotic camera systems faces multiple challenges in fixation, manipulation, orientation control, tool-tissue interaction, in vivo illumination and clear imaging.In this dissertation a novel actuation and control mechanism is developed and validated for an insertable laparoscopic camera. This design uses permanent magnets and coils as force/torque generators in an external control unit to manipulate an in vivo camera capsule. The motorless design of this capsule reduces the, wight, size and power consumption of the driven unit. In order to guarantee the smooth motion of the camera inside the abdominal cavity, an interaction force control method was proposed and validated.Optimizing the system\u27s design, through minimizing the control unit size and power consumption and extending maneuverability of insertable camera, was achieved by a novel transformable design, which uses a single permanent magnet in the control unit. The camera robot uses a permanent magnet as fixation and translation unit, and two embedded motor for tilt motion actuation, as well as illumination actuation. Transformable design provides superior imaging quality through an optimized illumination unit and a cleaning module. The illumination module uses freeform optical lenses to control light beams from the LEDs to achieve optimized illumination over surgical zone. The cleaning module prevents lens contamination through a pump actuated debris prevention system, while mechanically wipes the lens in case of contamination. The performance of transformable design and its modules have been assessed experimentally
    • …
    corecore