1,580 research outputs found

    Incremental Sampling-based Algorithms for Optimal Motion Planning

    Full text link
    During the last decade, incremental sampling-based motion planning algorithms, such as the Rapidly-exploring Random Trees (RRTs) have been shown to work well in practice and to possess theoretical guarantees such as probabilistic completeness. However, no theoretical bounds on the quality of the solution obtained by these algorithms have been established so far. The first contribution of this paper is a negative result: it is proven that, under mild technical conditions, the cost of the best path in the RRT converges almost surely to a non-optimal value. Second, a new algorithm is considered, called the Rapidly-exploring Random Graph (RRG), and it is shown that the cost of the best path in the RRG converges to the optimum almost surely. Third, a tree version of RRG is introduced, called the RRTβˆ—^* algorithm, which preserves the asymptotic optimality of RRG while maintaining a tree structure like RRT. The analysis of the new algorithms hinges on novel connections between sampling-based motion planning algorithms and the theory of random geometric graphs. In terms of computational complexity, it is shown that the number of simple operations required by both the RRG and RRTβˆ—^* algorithms is asymptotically within a constant factor of that required by RRT.Comment: 20 pages, 10 figures, this manuscript is submitted to the International Journal of Robotics Research, a short version is to appear at the 2010 Robotics: Science and Systems Conference

    The Critical Radius in Sampling-based Motion Planning

    Full text link
    We develop a new analysis of sampling-based motion planning in Euclidean space with uniform random sampling, which significantly improves upon the celebrated result of Karaman and Frazzoli (2011) and subsequent work. Particularly, we prove the existence of a critical connection radius proportional to Θ(nβˆ’1/d){\Theta(n^{-1/d})} for nn samples and d{d} dimensions: Below this value the planner is guaranteed to fail (similarly shown by the aforementioned work, ibid.). More importantly, for larger radius values the planner is asymptotically (near-)optimal. Furthermore, our analysis yields an explicit lower bound of 1βˆ’O(nβˆ’1){1-O( n^{-1})} on the probability of success. A practical implication of our work is that asymptotic (near-)optimality is achieved when each sample is connected to only Θ(1){\Theta(1)} neighbors. This is in stark contrast to previous work which requires Θ(log⁑n){\Theta(\log n)} connections, that are induced by a radius of order (log⁑nn)1/d{\left(\frac{\log n}{n}\right)^{1/d}}. Our analysis is not restricted to PRM and applies to a variety of PRM-based planners, including RRG, FMT* and BTT. Continuum percolation plays an important role in our proofs. Lastly, we develop similar theory for all the aforementioned planners when constructed with deterministic samples, which are then sparsified in a randomized fashion. We believe that this new model, and its analysis, is interesting in its own right

    Sampling-based Algorithms for Optimal Motion Planning

    Get PDF
    During the last decade, sampling-based path planning algorithms, such as Probabilistic RoadMaps (PRM) and Rapidly-exploring Random Trees (RRT), have been shown to work well in practice and possess theoretical guarantees such as probabilistic completeness. However, little effort has been devoted to the formal analysis of the quality of the solution returned by such algorithms, e.g., as a function of the number of samples. The purpose of this paper is to fill this gap, by rigorously analyzing the asymptotic behavior of the cost of the solution returned by stochastic sampling-based algorithms as the number of samples increases. A number of negative results are provided, characterizing existing algorithms, e.g., showing that, under mild technical conditions, the cost of the solution returned by broadly used sampling-based algorithms converges almost surely to a non-optimal value. The main contribution of the paper is the introduction of new algorithms, namely, PRM* and RRT*, which are provably asymptotically optimal, i.e., such that the cost of the returned solution converges almost surely to the optimum. Moreover, it is shown that the computational complexity of the new algorithms is within a constant factor of that of their probabilistically complete (but not asymptotically optimal) counterparts. The analysis in this paper hinges on novel connections between stochastic sampling-based path planning algorithms and the theory of random geometric graphs.Comment: 76 pages, 26 figures, to appear in International Journal of Robotics Researc

    Sampling-based optimal kinodynamic planning with motion primitives

    Full text link
    This paper proposes a novel sampling-based motion planner, which integrates in RRT* (Rapidly exploring Random Tree star) a database of pre-computed motion primitives to alleviate its computational load and allow for motion planning in a dynamic or partially known environment. The database is built by considering a set of initial and final state pairs in some grid space, and determining for each pair an optimal trajectory that is compatible with the system dynamics and constraints, while minimizing a cost. Nodes are progressively added to the tree {of feasible trajectories in the RRT* by extracting at random a sample in the gridded state space and selecting the best obstacle-free motion primitive in the database that joins it to an existing node. The tree is rewired if some nodes can be reached from the new sampled state through an obstacle-free motion primitive with lower cost. The computationally more intensive part of motion planning is thus moved to the preliminary offline phase of the database construction at the price of some performance degradation due to gridding. Grid resolution can be tuned so as to compromise between (sub)optimality and size of the database. The planner is shown to be asymptotically optimal as the grid resolution goes to zero and the number of sampled states grows to infinity

    Asymptotically Optimal Sampling-Based Motion Planning Methods

    Full text link
    Motion planning is a fundamental problem in autonomous robotics that requires finding a path to a specified goal that avoids obstacles and takes into account a robot's limitations and constraints. It is often desirable for this path to also optimize a cost function, such as path length. Formal path-quality guarantees for continuously valued search spaces are an active area of research interest. Recent results have proven that some sampling-based planning methods probabilistically converge toward the optimal solution as computational effort approaches infinity. This survey summarizes the assumptions behind these popular asymptotically optimal techniques and provides an introduction to the significant ongoing research on this topic.Comment: Posted with permission from the Annual Review of Control, Robotics, and Autonomous Systems, Volume 4. Copyright 2021 by Annual Reviews, https://www.annualreviews.org/. 25 pages. 2 figure
    • …
    corecore