2 research outputs found

    Modeling of Photovoltaic Module

    Get PDF
    A Photovoltaic (PV) cell is a device that converts sunlight or incident light into direct current (DC) based electricity. Among other forms of renewable energy, PV-based power sources are considered a cleaner form of energy generation. Due to lower prices and increased efficiency, they have become much more popular than any other renewable energy source. In a PV module, PV cells are connected in a series and parallel configuration, depending on the voltage and current rating, respectively. Hence, PV modules tend to have a fixed topology. However, in the case of partial shading, mismatching or failure of a single PV cell can lead to many anomalies in a PV module’s functioning. If proper attention is not given, it can lead to the forward biasing of healthy PV cells in the module, causing them to consume the electricity instead of producing it, hence reducing the PV module’s overall efficiency. Hence, to further the PV module research, it is essential to have an approximate way to model them. Doing so allows for understanding the design’s pros and cons before deploying the PV module-based power system in the field. In the last decade, many mathematical models for PV cell simulation and modeling techniques have been proposed. The most popular among all the techniques are diode based PV modeling. In this book chapter, the author will present a double diode based PV cell modeling. Later, the PV module modeling will be presented using these techniques that incorporate mismatch, partial shading, and open/short fault. The partial shading and mismatch are reduced by incorporating a bypass diode along with a group of four PV cells. The mathematical model for showing the effectiveness of bypass diode with PV cells in reducing partial shading effect will also be presented. Additionally, in recent times besides fixed topology of series–parallel, Total Cross-Tied (TCT), Bridge Link (BL), and Honey-Comb (H-C) have shown a better capability in dealing with partial shading and mismatch. The book chapter will also cover PV module modeling using TCT, BL, and H-C in detail

    Modelação e análise dos díodos de bypass em sistemas fotovoltaicos sob condições de sombreamento parcial

    Get PDF
    A produção de energia elétrica é uma das maiores necessidades da sociedade atual. De todas as fontes renováveis de energia elétrica, a energia solar é aquela que apresenta uma maior margem de crescimento. Futuramente, devido ao uso massivo da energia solar, os sistemas fotovoltaicos terão de ser extremamente eficientes e otimizados. O objetivo desta dissertação consiste em preencher a lacuna existente na literatura especializada sobre o estudo elétrico-térmico dos díodos de bypass e o seu impacto nas curvas características Corrente-Tensão e Potência-Tensão. As condições de sombreamento parciais têm um forte impacto na produção de energia elétrica. Para quantificar esse impacto e analisar o efeito dos díodos de bypass foram criados dois perfis de sombreamento parcial e desenvolvido um sistema de hardware para obter os dados experimentais. Para a validação matemática dos resultados obtidos, foram utilizados os modelos matemáticos mais citados na literatura (modelo matemático a um díodo e modelo matemático a dois díodos). No entanto, devido à natureza implícita das equações matemáticas que caracterizam os respetivos modelos matemáticos, a estimação dos parâmetros fotovoltaicos é um problema complexo e multimodal. Para ultrapassar essa limitação foi desenvolvido um novo algoritmo metaheurístico inspirado em redes neuronais artificiais e no sistema nervoso humano hibridizado com mapas caóticos.The production of electrical energy is one of the greastest needs of today’s society. Off all the renewable sources of electrical energy, solar energy is the one with the greastest growth margin. In the future, due to the massive use of solar energy, photovoltaic systems will have to be extremely efficient and optimized. The objetive of this dissertation is to fill the gap in the specialized literature on the electrical-thermal study of bypass diodes and their impact in Current-Voltage and Power-Voltage characteristic curves. The conditions of partial shadding has a strong impact on electricity production. For quantify this impact and analyze the effect of bypass diodes were created two partial shadding profiles and developed a hardware system to obtain the experimental data. For the mathematical validation of the obtained results, were used the most cited mathematical models (single diode model and double diode model) in the literature. However, due to the implicit nature of the mathematics equations that characterize the respective mathematical models, the estimation of photovoltaic parameters is a complex and multimodal problem. To overcome this limitation a new metaheuristic algorithm inspired in artificial neural network and human nervous system was devoloped hybridized with chaotic maps
    corecore