4 research outputs found

    A New Cooperative MIMO Scheme Based on SM for Energy-Efficiency Improvement in Wireless Sensor Network

    Get PDF
    Improving the energy efficiency in wireless sensor networks (WSN) has attracted considerable attention nowadays. The multiple-input multiple-output (MIMO) technique has been proved as a good candidate for improving the energy efficiency, but it may not be feasible in WSN which is due to the size limitation of the sensor node. As a solution, the cooperative multiple-input multiple-output (CMIMO) technique overcomes this constraint and shows a dramatically good performance. In this paper, a new CMIMO scheme based on the spatial modulation (SM) technique named CMIMO-SM is proposed for energy-efficiency improvement. We first establish the system model of CMIMO-SM. Based on this model, the transmission approach is introduced graphically. In order to evaluate the performance of the proposed scheme, a detailed analysis in terms of energy consumption per bit of the proposed scheme compared with the conventional CMIMO is presented. Later, under the guide of this new scheme we extend our proposed CMIMO-SM to a multihop clustered WSN for further achieving energy efficiency by finding an optimal hop-length. Equidistant hop as the traditional scheme will be compared in this paper. Results from the simulations and numerical experiments indicate that by the use of the proposed scheme, significant savings in terms of total energy consumption can be achieved. Combining the proposed scheme with monitoring sensor node will provide a good performance in arbitrary deployed WSN such as forest fire detection system

    Balanced Transmissions Based Trajectories of Mobile Sink in Homogeneous Wireless Sensor Networks

    Get PDF
    Mobile Sink (MS) based routing strategies have been widely investigated to prolong the lifetime of Wireless Sensor Networks (WSNs). In this paper, we propose two schemes for data gathering in WSNs: (i) MS moves on random paths in the network (RMS) and (ii) the trajectory of MS is defined (DMS). In both the schemes, the network field is logically divided into small squares. The center point of each partitioned area is the sojourn location of the MS. We present three linear programming based models: (i) to maximize network lifetime, (ii) to minimize path loss, and (iii) to minimize end to end delay. Moreover, a geometric model is proposed to avoid redundancy while collecting information from the network nodes. Simulation results show that our proposed schemes perform better than the selected existing schemes in terms of the selected performance metrics

    A study on cluster lifetime in multi-hop wireless sensor networks with cooperative MISO scheme

    No full text
    corecore