8,032 research outputs found

    Align-and-Attend Network for Globally and Locally Coherent Video Inpainting

    Full text link
    We propose a novel feed-forward network for video inpainting. We use a set of sampled video frames as the reference to take visible contents to fill the hole of a target frame. Our video inpainting network consists of two stages. The first stage is an alignment module that uses computed homographies between the reference frames and the target frame. The visible patches are then aggregated based on the frame similarity to fill in the target holes roughly. The second stage is a non-local attention module that matches the generated patches with known reference patches (in space and time) to refine the previous global alignment stage. Both stages consist of large spatial-temporal window size for the reference and thus enable modeling long-range correlations between distant information and the hole regions. Therefore, even challenging scenes with large or slowly moving holes can be handled, which have been hardly modeled by existing flow-based approach. Our network is also designed with a recurrent propagation stream to encourage temporal consistency in video results. Experiments on video object removal demonstrate that our method inpaints the holes with globally and locally coherent contents

    Deep multi-frame face super-resolution

    Full text link
    Face verification and recognition problems have seen rapid progress in recent years, however recognition from small size images remains a challenging task that is inherently intertwined with the task of face super-resolution. Tackling this problem using multiple frames is an attractive idea, yet requires solving the alignment problem that is also challenging for low-resolution faces. Here we present a holistic system for multi-frame recognition, alignment, and superresolution of faces. Our neural network architecture restores the central frame of each input sequence additionally taking into account a number of adjacent frames and making use of sub-pixel movements. We present our results using the popular dataset for video face recognition (YouTube Faces). We show a notable improvement of identification score compared to several baselines including the one based on single-image super-resolution

    Perceptual Video Super Resolution with Enhanced Temporal Consistency

    Full text link
    With the advent of perceptual loss functions, new possibilities in super-resolution have emerged, and we currently have models that successfully generate near-photorealistic high-resolution images from their low-resolution observations. Up to now, however, such approaches have been exclusively limited to single image super-resolution. The application of perceptual loss functions on video processing still entails several challenges, mostly related to the lack of temporal consistency of the generated images, i.e., flickering artifacts. In this work, we present a novel adversarial recurrent network for video upscaling that is able to produce realistic textures in a temporally consistent way. The proposed architecture naturally leverages information from previous frames due to its recurrent architecture, i.e. the input to the generator is composed of the low-resolution image and, additionally, the warped output of the network at the previous step. Together with a video discriminator, we also propose additional loss functions to further reinforce temporal consistency in the generated sequences. The experimental validation of our algorithm shows the effectiveness of our approach which obtains images with high perceptual quality and improved temporal consistency.Comment: Major revision and improvement of the manuscript: New network architecture, new loss function and extended experiment

    Content-Preserving Image Stitching with Regular Boundary Constraints

    Full text link
    This paper proposes an approach to content-preserving stitching of images with regular boundary constraints, which aims to stitch multiple images to generate a panoramic image with regular boundary. Existing methods treat image stitching and rectangling as two separate steps, which may result in suboptimal results as the stitching process is not aware of the further warping needs for rectangling. We address these limitations by formulating image stitching with regular boundaries in a unified optimization. Starting from the initial stitching results produced by traditional warping-based optimization, we obtain the irregular boundary from the warped meshes by polygon Boolean operations which robustly handle arbitrary mesh compositions, and by analyzing the irregular boundary construct a piecewise rectangular boundary. Based on this, we further incorporate straight line preserving and regular boundary constraints into the image stitching framework, and conduct iterative optimization to obtain an optimal piecewise rectangular boundary, thus can make the panoramic boundary as close as possible to a rectangle, while reducing unwanted distortions. We further extend our method to panoramic videos and selfie photography, by integrating the temporal coherence and portrait preservation into the optimization. Experiments show that our method efficiently produces visually pleasing panoramas with regular boundaries and unnoticeable distortions.Comment: 12 figures, 13 page

    Image Resizing by Reconstruction from Deep Features

    Full text link
    Traditional image resizing methods usually work in pixel space and use various saliency measures. The challenge is to adjust the image shape while trying to preserve important content. In this paper we perform image resizing in feature space where the deep layers of a neural network contain rich important semantic information. We directly adjust the image feature maps, extracted from a pre-trained classification network, and reconstruct the resized image using a neural-network based optimization. This novel approach leverages the hierarchical encoding of the network, and in particular, the high-level discriminative power of its deeper layers, that recognizes semantic objects and regions and allows maintaining their aspect ratio. Our use of reconstruction from deep features diminishes the artifacts introduced by image-space resizing operators. We evaluate our method on benchmarks, compare to alternative approaches, and demonstrate its strength on challenging images.Comment: 13 pages, 21 figure

    Robust Registration of Gaussian Mixtures for Colour Transfer

    Full text link
    We present a flexible approach to colour transfer inspired by techniques recently proposed for shape registration. Colour distributions of the palette and target images are modelled with Gaussian Mixture Models (GMMs) that are robustly registered to infer a non linear parametric transfer function. We show experimentally that our approach compares well to current techniques both quantitatively and qualitatively. Moreover, our technique is computationally the fastest and can take efficient advantage of parallel processing architectures for recolouring images and videos. Our transfer function is parametric and hence can be stored in memory for later usage and also combined with other computed transfer functions to create interesting visual effects. Overall this paper provides a fast user friendly approach to recolouring of image and video materials

    A Novel Semantics and Feature Preserving Perspective for Content Aware Image Retargeting

    Full text link
    There is an increasing requirement for efficient image retargeting techniques to adapt the content to various forms of digital media. With rapid growth of mobile communications and dynamic web page layouts, one often needs to resize the media content to adapt to the desired display sizes. For various layouts of web pages and typically small sizes of handheld portable devices, the importance in the original image content gets obfuscated after resizing it with the approach of uniform scaling. Thus, there occurs a need for resizing the images in a content aware manner which can automatically discard irrelevant information from the image and present the salient features with more magnitude. There have been proposed some image retargeting techniques keeping in mind the content awareness of the input image. However, these techniques fail to prove globally effective for various kinds of images and desired sizes. The major problem is the inefficiency of these algorithms to process these images with minimal visual distortion while also retaining the meaning conveyed from the image. In this dissertation, we present a novel perspective for content aware image retargeting, which is well implementable in real time. We introduce a novel method of analysing semantic information within the input image while also maintaining the important and visually significant features. We present the various nuances of our algorithm mathematically and logically, and show that the results prove better than the state-of-the-art techniques.Comment: 74 Pages, 46 Figures, Masters Thesi

    Towards Fine-grained Human Pose Transfer with Detail Replenishing Network

    Full text link
    Human pose transfer (HPT) is an emerging research topic with huge potential in fashion design, media production, online advertising and virtual reality. For these applications, the visual realism of fine-grained appearance details is crucial for production quality and user engagement. However, existing HPT methods often suffer from three fundamental issues: detail deficiency, content ambiguity and style inconsistency, which severely degrade the visual quality and realism of generated images. Aiming towards real-world applications, we develop a more challenging yet practical HPT setting, termed as Fine-grained Human Pose Transfer (FHPT), with a higher focus on semantic fidelity and detail replenishment. Concretely, we analyze the potential design flaws of existing methods via an illustrative example, and establish the core FHPT methodology by combing the idea of content synthesis and feature transfer together in a mutually-guided fashion. Thereafter, we substantiate the proposed methodology with a Detail Replenishing Network (DRN) and a corresponding coarse-to-fine model training scheme. Moreover, we build up a complete suite of fine-grained evaluation protocols to address the challenges of FHPT in a comprehensive manner, including semantic analysis, structural detection and perceptual quality assessment. Extensive experiments on the DeepFashion benchmark dataset have verified the power of proposed benchmark against start-of-the-art works, with 12\%-14\% gain on top-10 retrieval recall, 5\% higher joint localization accuracy, and near 40\% gain on face identity preservation. Moreover, the evaluation results offer further insights to the subject matter, which could inspire many promising future works along this direction.Comment: IEEE TIP submissio

    Dynamic Temporal Alignment of Speech to Lips

    Full text link
    Many speech segments in movies are re-recorded in a studio during postproduction, to compensate for poor sound quality as recorded on location. Manual alignment of the newly-recorded speech with the original lip movements is a tedious task. We present an audio-to-video alignment method for automating speech to lips alignment, stretching and compressing the audio signal to match the lip movements. This alignment is based on deep audio-visual features, mapping the lips video and the speech signal to a shared representation. Using this shared representation we compute the lip-sync error between every short speech period and every video frame, followed by the determination of the optimal corresponding frame for each short sound period over the entire video clip. We demonstrate successful alignment both quantitatively, using a human perception-inspired metric, as well as qualitatively. The strongest advantage of our audio-to-video approach is in cases where the original voice in unclear, and where a constant shift of the sound can not give a perfect alignment. In these cases state-of-the-art methods will fail

    Elastic Functional Coding of Riemannian Trajectories

    Full text link
    Visual observations of dynamic phenomena, such as human actions, are often represented as sequences of smoothly-varying features . In cases where the feature spaces can be structured as Riemannian manifolds, the corresponding representations become trajectories on manifolds. Analysis of these trajectories is challenging due to non-linearity of underlying spaces and high-dimensionality of trajectories. In vision problems, given the nature of physical systems involved, these phenomena are better characterized on a low-dimensional manifold compared to the space of Riemannian trajectories. For instance, if one does not impose physical constraints of the human body, in data involving human action analysis, the resulting representation space will have highly redundant features. Learning an effective, low-dimensional embedding for action representations will have a huge impact in the areas of search and retrieval, visualization, learning, and recognition. The difficulty lies in inherent non-linearity of the domain and temporal variability of actions that can distort any traditional metric between trajectories. To overcome these issues, we use the framework based on transported square-root velocity fields (TSRVF); this framework has several desirable properties, including a rate-invariant metric and vector space representations. We propose to learn an embedding such that each action trajectory is mapped to a single point in a low-dimensional Euclidean space, and the trajectories that differ only in temporal rates map to the same point. We utilize the TSRVF representation, and accompanying statistical summaries of Riemannian trajectories, to extend existing coding methods such as PCA, KSVD and Label Consistent KSVD to Riemannian trajectories or more generally to Riemannian functions.Comment: Under major revision at IEEE T-PAMI, 201
    • …
    corecore