2 research outputs found

    Efficient local search limitation strategy for single machine total weighted tardiness scheduling with sequence-dependent setup times

    Full text link
    This paper concerns the single machine total weighted tardiness scheduling with sequence-dependent setup times, usually referred as 1∣sijβˆ£βˆ‘wjTj1|s_{ij}|\sum w_jT_j. In this NP\mathcal{NP}-hard problem, each job has an associated processing time, due date and a weight. For each pair of jobs ii and jj, there may be a setup time before starting to process jj in case this job is scheduled immediately after ii. The objective is to determine a schedule that minimizes the total weighted tardiness, where the tardiness of a job is equal to its completion time minus its due date, in case the job is completely processed only after its due date, and is equal to zero otherwise. Due to its complexity, this problem is most commonly solved by heuristics. The aim of this work is to develop a simple yet effective limitation strategy that speeds up the local search procedure without a significant loss in the solution quality. Such strategy consists of a filtering mechanism that prevents unpromising moves to be evaluated. The proposed strategy has been embedded in a local search based metaheuristic from the literature and tested in classical benchmark instances. Computational experiments revealed that the limitation strategy enabled the metaheuristic to be extremely competitive when compared to other algorithms from the literature, since it allowed the use of a large number of neighborhood structures without a significant increase in the CPU time and, consequently, high quality solutions could be achieved in a matter of seconds. In addition, we analyzed the effectiveness of the proposed strategy in two other well-known metaheuristics. Further experiments were also carried out on benchmark instances of problem 1∣sijβˆ£βˆ‘Tj1|s_{ij}|\sum T_j.Comment: 32 pages, 4 figure

    A unified heuristic and an annotated bibliography for a large class of earliness-tardiness scheduling problems

    Full text link
    This work proposes a unified heuristic algorithm for a large class of earliness-tardiness (E-T) scheduling problems. We consider single/parallel machine E-T problems that may or may not consider some additional features such as idle time, setup times and release dates. In addition, we also consider those problems whose objective is to minimize either the total (average) weighted completion time or the total (average) weighted flow time, which arise as particular cases when the due dates of all jobs are either set to zero or to their associated release dates, respectively. The developed local search based metaheuristic framework is quite simple, but at the same time relies on sophisticated procedures for efficiently performing local search according to the characteristics of the problem. We present efficient move evaluation approaches for some parallel machine problems that generalize the existing ones for single machine problems. The algorithm was tested in hundreds of instances of several E-T problems and particular cases. The results obtained show that our unified heuristic is capable of producing high quality solutions when compared to the best ones available in the literature that were obtained by specific methods. Moreover, we provide an extensive annotated bibliography on the problems related to those considered in this work, where we not only indicate the approach(es) used in each publication, but we also point out the characteristics of the problem(s) considered. Beyond that, we classify the existing methods in different categories so as to have a better idea of the popularity of each type of solution procedure
    corecore