635 research outputs found

    A Scene-Agnostic Framework with Adversarial Training for Abnormal Event Detection in Video

    Full text link
    Abnormal event detection in video is a complex computer vision problem that has attracted significant attention in recent years. The complexity of the task arises from the commonly-agreed definition of an abnormal event, that is, a rarely occurring event that typically depends on the surrounding context. Following the standard formulation of abnormal event detection as outlier detection, we propose a scene-agnostic framework that learns from training videos containing only normal events. Our framework is composed of an object detector, a set of appearance and motion auto-encoders, and a discriminator. Since our framework only looks at object detections, it can be applied to different scenes, provided that abnormal events are defined identically across scenes. This makes our method scene agnostic, as we rely strictly on objects that can cause anomalies, and not on the background. To overcome the lack of abnormal data during training, we propose an adversarial learning strategy for the auto-encoders. We create a scene-agnostic set of out-of-domain adversarial examples, which are correctly reconstructed by the auto-encoders before applying gradient ascent on the adversarial examples. We further utilize the adversarial examples to serve as abnormal examples when training a binary classifier to discriminate between normal and abnormal latent features and reconstructions. Furthermore, to ensure that the auto-encoders focus only on the main object inside each bounding box image, we introduce a branch that learns to segment the main object. We compare our framework with the state-of-the-art methods on three benchmark data sets, using various evaluation metrics. Compared to existing methods, the empirical results indicate that our approach achieves favorable performance on all data sets.Comment: Under revie

    Predicting Next Local Appearance for Video Anomaly Detection

    Full text link
    We present a local anomaly detection method in videos. As opposed to most existing methods that are computationally expensive and are not very generalizable across different video scenes, we propose an adversarial framework that learns the temporal local appearance variations by predicting the appearance of a normally behaving object in the next frame of a scene by only relying on its current and past appearances. In the presence of an abnormally behaving object, the reconstruction error between the real and the predicted next appearance of that object indicates the likelihood of an anomaly. Our method is competitive with the existing state-of-the-art while being significantly faster for both training and inference and being better at generalizing to unseen video scenes.Comment: Accepted as an oral presentation for MVA'202

    Self-Supervised Predictive Convolutional Attentive Block for Anomaly Detection

    Get PDF
    Anomaly detection is commonly pursued as a one-class classification problem, where models can only learn from normal training samples, while being evaluated on both normal and abnormal test samples. Among the successful approaches for anomaly detection, a distinguished category of methods relies on predicting masked information (e.g. patches, future frames, etc.) and leveraging the reconstruction error with respect to the masked information as an abnormality score. Different from related methods, we propose to integrate the reconstruction-based functionality into a novel self-supervised predictive architectural building block. The proposed self-supervised block is generic and can easily be incorporated into various state-of-the-art anomaly detection methods. Our block starts with a convolutional layer with dilated filters, where the center area of the receptive field is masked. The resulting activation maps are passed through a channel attention module. Our block is equipped with a loss that minimizes the reconstruction error with respect to the masked area in the receptive field. We demonstrate the generality of our block by integrating it into several state-of-the-art frameworks for anomaly detection on image and video, providing empirical evidence that shows considerable performance improvements on MVTec AD, Avenue, and ShanghaiTech. We release our code as open source at https://github.com/ristea/sspcab.Comment: Accepted at CVPR 2022. Paper + supplementary (14 pages, 9 figures

    An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos

    Full text link
    Videos represent the primary source of information for surveillance applications and are available in large amounts but in most cases contain little or no annotation for supervised learning. This article reviews the state-of-the-art deep learning based methods for video anomaly detection and categorizes them based on the type of model and criteria of detection. We also perform simple studies to understand the different approaches and provide the criteria of evaluation for spatio-temporal anomaly detection.Comment: 15 pages, double colum

    Active Authentication using an Autoencoder regularized CNN-based One-Class Classifier

    Full text link
    Active authentication refers to the process in which users are unobtrusively monitored and authenticated continuously throughout their interactions with mobile devices. Generally, an active authentication problem is modelled as a one class classification problem due to the unavailability of data from the impostor users. Normally, the enrolled user is considered as the target class (genuine) and the unauthorized users are considered as unknown classes (impostor). We propose a convolutional neural network (CNN) based approach for one class classification in which a zero centered Gaussian noise and an autoencoder are used to model the pseudo-negative class and to regularize the network to learn meaningful feature representations for one class data, respectively. The overall network is trained using a combination of the cross-entropy and the reconstruction error losses. A key feature of the proposed approach is that any pre-trained CNN can be used as the base network for one class classification. Effectiveness of the proposed framework is demonstrated using three publically available face-based active authentication datasets and it is shown that the proposed method achieves superior performance compared to the traditional one class classification methods. The source code is available at: github.com/otkupjnoz/oc-acnn.Comment: Accepted and to appear at AFGR 201
    corecore