9 research outputs found

    Estimation in the group action channel

    Full text link
    We analyze the problem of estimating a signal from multiple measurements on a \mbox{group action channel} that linearly transforms a signal by a random group action followed by a fixed projection and additive Gaussian noise. This channel is motivated by applications such as multi-reference alignment and cryo-electron microscopy. We focus on the large noise regime prevalent in these applications. We give a lower bound on the mean square error (MSE) of any asymptotically unbiased estimator of the signal's orbit in terms of the signal's moment tensors, which implies that the MSE is bounded away from 0 when N/σ2dN/\sigma^{2d} is bounded from above, where NN is the number of observations, σ\sigma is the noise standard deviation, and dd is the so-called \mbox{moment order cutoff}. In contrast, the maximum likelihood estimator is shown to be consistent if N/σ2dN /\sigma^{2d} diverges.Comment: 5 pages, conferenc

    Heterogeneous multireference alignment: a single pass approach

    Full text link
    Multireference alignment (MRA) is the problem of estimating a signal from many noisy and cyclically shifted copies of itself. In this paper, we consider an extension called heterogeneous MRA, where KK signals must be estimated, and each observation comes from one of those signals, unknown to us. This is a simplified model for the heterogeneity problem notably arising in cryo-electron microscopy. We propose an algorithm which estimates the KK signals without estimating either the shifts or the classes of the observations. It requires only one pass over the data and is based on low-order moments that are invariant under cyclic shifts. Given sufficiently many measurements, one can estimate these invariant features averaged over the KK signals. We then design a smooth, non-convex optimization problem to compute a set of signals which are consistent with the estimated averaged features. We find that, in many cases, the proposed approach estimates the set of signals accurately despite non-convexity, and conjecture the number of signals KK that can be resolved as a function of the signal length LL is on the order of L\sqrt{L}.Comment: 6 pages, 3 figure

    A Modified Cross Correlation Algorithm for Reference-free Image Alignment of Non-Circular Projections in Single-Particle Electron Microscopy

    Full text link
    In this paper we propose a modified cross correlation method to align images from the same class in single-particle electron microscopy of highly non-spherical structures. In this new method, First we coarsely align projection images, and then re-align the resulting images using the cross correlation (CC) method. The coarse alignment is obtained by matching the centers of mass and the principal axes of the images. The distribution of misalignment in this coarse alignment can be quantified based on the statistical properties of the additive background noise. As a consequence, the search space for re-alignment in the cross correlation method can be reduced to achieve better alignment. In order to overcome problems associated with false peaks in the cross correlations function, we use artificially blurred images for the early stage of the iterative cross correlation method and segment the intermediate class average from every iteration step. These two additional manipulations combined with the reduced search space size in the cross correlation method yield better alignments for low signal-to-noise ratio images than both classical cross correlation and maximum likelihood(ML) methods.Comment: 29page

    Multireference Alignment is Easier with an Aperiodic Translation Distribution

    Full text link
    In the multireference alignment model, a signal is observed by the action of a random circular translation and the addition of Gaussian noise. The goal is to recover the signal's orbit by accessing multiple independent observations. Of particular interest is the sample complexity, i.e., the number of observations/samples needed in terms of the signal-to-noise ratio (the signal energy divided by the noise variance) in order to drive the mean-square error (MSE) to zero. Previous work showed that if the translations are drawn from the uniform distribution, then, in the low SNR regime, the sample complexity of the problem scales as ω(1/SNR3)\omega(1/\text{SNR}^3). In this work, using a generalization of the Chapman--Robbins bound for orbits and expansions of the χ2\chi^2 divergence at low SNR, we show that in the same regime the sample complexity for any aperiodic translation distribution scales as ω(1/SNR2)\omega(1/\text{SNR}^2). This rate is achieved by a simple spectral algorithm. We propose two additional algorithms based on non-convex optimization and expectation-maximization. We also draw a connection between the multireference alignment problem and the spiked covariance model

    Bispectrum Inversion with Application to Multireference Alignment

    Full text link
    We consider the problem of estimating a signal from noisy circularly-translated versions of itself, called multireference alignment (MRA). One natural approach to MRA could be to estimate the shifts of the observations first, and infer the signal by aligning and averaging the data. In contrast, we consider a method based on estimating the signal directly, using features of the signal that are invariant under translations. Specifically, we estimate the power spectrum and the bispectrum of the signal from the observations. Under mild assumptions, these invariant features contain enough information to infer the signal. In particular, the bispectrum can be used to estimate the Fourier phases. To this end, we propose and analyze a few algorithms. Our main methods consist of non-convex optimization over the smooth manifold of phases. Empirically, in the absence of noise, these non-convex algorithms appear to converge to the target signal with random initialization. The algorithms are also robust to noise. We then suggest three additional methods. These methods are based on frequency marching, semidefinite relaxation and integer programming. The first two methods provably recover the phases exactly in the absence of noise. In the high noise level regime, the invariant features approach for MRA results in stable estimation if the number of measurements scales like the cube of the noise variance, which is the information-theoretic rate. Additionally, it requires only one pass over the data which is important at low signal-to-noise ratio when the number of observations must be large
    corecore