23,008 research outputs found

    Value of thermostatic loads in future low-carbon Great Britain system

    Get PDF
    This paper quantifies the value of a large population of heterogeneous thermostatically controlled loads (TCLs). The TCL dynamics are regulated by means of an advanced demand side response model (DSRM). It optimally determines the flexible energy/power consumption and simultaneously allocates multiple ancillary services. This model explicitly incorporates the control of dynamics of the TCL recovery pattern after the provision of the selected services. The proposed framework is integrated in a mixed integer linear programming formulation for a multi-stage stochastic unit commitment. The scheduling routine considers inertia-dependent frequency response requirements to deal with the drastic reduction of system inertia under future low-carbon scenarios. Case studies focus on the system operation cost and CO2 emissions reductions for individual TCLs for a) different future network scenarios, b) different frequency requirements, c) changes of TCL parameters (e.g. coefficient of performance, thermal insulation etc.)

    Renewable electricity generation and transmission network developments in light of public opposition: Insights from Ireland. ESRI Working Paper No. 653 March 2020

    Get PDF
    This paper analyses how people’s attitudes towards onshore wind power and overhead transmission lines affect the costoptimal development of electricity generation mixes, under a high renewable energy policy. For that purpose, we use a power systems generation and transmission expansion planning model, combined with information on public attitudes towards energy infrastructure on the island of Ireland. Overall, households have a positive attitude towards onshore wind power but their willingness to accept wind farms near their homes tends to be low. Opposition to overhead transmission lines is even greater. This can lead to a substantial increase in the costs of expanding the power system. In the Irish case, costs escalate by more than 4.3% when public opposition is factored into the constrained optimisation of power generation and grid expansion planning across the island. This is mainly driven by the compounded effects of higher capacity investments in more expensive technologies such as offshore wind and solar photovoltaic to compensate for lower levels of onshore wind generation and grid reinforcements. The results also reveal the effect of public opposition on the value of onshore wind, via shadow prices. The higher the level of public opposition, the higher the shadow value of onshore wind. And, this starkly differs across regions: regions with more wind resource or closest to major demand centres have the highest shadow prices. The shadow costs can guide policy makers when designing incentive mechanisms to garner public support for onshore wind installations

    A New Efficient Stochastic Energy Management Technique for Interconnected AC Microgrids

    Full text link
    Cooperating interconnected microgrids with the Distribution System Operation (DSO) can lead to an improvement in terms of operation and reliability. This paper investigates the optimal operation and scheduling of interconnected microgrids highly penetrated by renewable energy resources (DERs). Moreover, an efficient stochastic framework based on the Unscented Transform (UT) method is proposed to model uncertainties associated with the hourly market price, hourly load demand and DERs output power. Prior to the energy management, a newly developed linearization technique is employed to linearize nodal equations extracted from the AC power flow. The proposed stochastic problem is formulated as a single-objective optimization problem minimizing the interconnected AC MGs cost function. In order to validate the proposed technique, a modified IEEE 69 bus network is studied as the test case
    • …
    corecore