3 research outputs found

    An improved adaptive genetic algorithm for image segmentation and vision alignment used in microelectronic bonding

    Get PDF
    In order to improve the precision and efficiency of microelectronic bonding, this paper presents an improved adaptive genetic algorithm (IAGA) for the image segmentation and vision alignment of the solder joints in the microelectronic chips. The maximum between-cluster variance (OTSU) threshold segmentation method was adopted for the image segmentation of microchips, and the IAGA was introduced to the threshold segmentation considering the features of the images. The performance of the image segmentation was investigated by computational and experimental tests. The results show that the IAGA has faster convergence and better global optimality compared with standard genetic algorithm (SGA), and the quality of the segmented images becomes better by using the OTSU threshold segmentation method based on IAGA. On the basis of moment invariant approach, the microvision alignment was realized. Experiments were carried out to implement the microvision alignment of the solder joints in the microelectronic chips, and the results indicate that there are no alignment failures using the OTSU threshold segmentation method based on IAGA, which is superior to the OTSU method based on SGA in improving the precision and speed of the vision alignments

    Single-lens multi-ocular stereovision using prism

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A stereo vision system for the inspection of IC bonding wires

    No full text
    10.1002/ima.1010International Journal of Imaging Systems and Technology114254-262IJIT
    corecore