3 research outputs found

    Dynamics and Optimal Taxation Control in a Bioeconomic Model with Stage Structure and Gestation Delay

    Get PDF
    A prey-predator model with gestation delay, stage structure for predator, and selective harvesting effort on mature predator is proposed, where taxation is considered as a control instrument to protect the population resource in prey-predator biosystem from overexploitation. It shows that interior equilibrium is locally asymptotically stable when the gestation delay is zero, and there is no periodic orbit within the interior of the first quadrant of state space around the interior equilibrium. An optimal harvesting policy can be obtained by virtue of Pontryagin's Maximum Principle without considering gestation delay; on the other hand, the interior equilibrium of model system loses as gestation delay increases through critical certain threshold, a phenomenon of Hopf bifurcation occurs, and a stable limit cycle corresponding to the periodic solution of model system is also observed. Finally, numerical simulations are carried out to show consistency with theoretical analysis

    Modelling the Control of the Impact of Fall Armyworm (Spodoptera frugiperda) Infestations on Maize Production

    Get PDF
    This research article published by Hindawi, 2021In this paper, we propose and analyze a stage-structured mathematical model for modelling the control of the impact of Fall Armyworm infestations on maize production. Preliminary analysis of the model in the vegetative and reproductive stages revealed that the two systems had a unique and positively bounded solution for all time . Numerical analysis of the model in both stages under two different cases was also considered: Case 1: different number of the adult moths in the field assumed at and Case 2: the existence of exogenous factors that lead to the immigration of adult moths in the field at time . The results indicate that the destruction of maize biomass which is accompanied by a decrease in maize plants to an average of 160 and 142 in the vegetative and reproductive stages, respectively, was observed to be higher in Case 2 than in Case 1 due to subsequent increase in egg production and density of the caterpillars in first few (10) days after immigration. This severe effect on maize plants caused by the unprecedented number of the pests influenced the extension of the model in both stages to include controls such as pesticides and harvesting. The results further show that the pest was significantly suppressed, resulting in an increase in maize plants to an average of 467 and 443 in vegetative and reproductive stages, respectively

    Dynamical Behavior and Stability Analysis in a Stage-Structured Prey Predator Model with Discrete Delay and Distributed Delay

    Get PDF
    We propose a prey predator model with stage structure for prey. A discrete delay and a distributed delay for predator described by an integral with a strong delay kernel are also considered. Existence of two feasible boundary equilibria and a unique interior equilibrium are analytically investigated. By analyzing associated characteristic equation, local stability analysis of boundary equilibrium and interior equilibrium is discussed, respectively. It reveals that interior equilibrium is locally stable when discrete delay is less than a critical value. According to Hopf bifurcation theorem for functional differential equations, it can be found that model undergoes Hopf bifurcation around the interior equilibrium when local stability switch occurs and corresponding stable limit cycle is observed. Furthermore, directions of Hopf bifurcation and stability of the bifurcating periodic solutions are studied based on normal form theory and center manifold theorem. Numerical simulations are carried out to show consistency with theoretical analysis
    corecore