41,046 research outputs found

    Interpreting recurrent neural networks behaviour via excitable network attractors

    Get PDF
    Introduction: Machine learning provides fundamental tools both for scientific research and for the development of technologies with significant impact on society. It provides methods that facilitate the discovery of regularities in data and that give predictions without explicit knowledge of the rules governing a system. However, a price is paid for exploiting such flexibility: machine learning methods are typically black-boxes where it is difficult to fully understand what the machine is doing or how it is operating. This poses constraints on the applicability and explainability of such methods. Methods: Our research aims to open the black-box of recurrent neural networks, an important family of neural networks used for processing sequential data. We propose a novel methodology that provides a mechanistic interpretation of behaviour when solving a computational task. Our methodology uses mathematical constructs called excitable network attractors, which are invariant sets in phase space composed of stable attractors and excitable connections between them. Results and Discussion: As the behaviour of recurrent neural networks depends both on training and on inputs to the system, we introduce an algorithm to extract network attractors directly from the trajectory of a neural network while solving tasks. Simulations conducted on a controlled benchmark task confirm the relevance of these attractors for interpreting the behaviour of recurrent neural networks, at least for tasks that involve learning a finite number of stable states and transitions between them.Comment: revised versio

    Recurrent backpropagation and the dynamical approach to adaptive neural computation

    Get PDF
    Error backpropagation in feedforward neural network models is a popular learning algorithm that has its roots in nonlinear estimation and optimization. It is being used routinely to calculate error gradients in nonlinear systems with hundreds of thousands of parameters. However, the classical architecture for backpropagation has severe restrictions. The extension of backpropagation to networks with recurrent connections will be reviewed. It is now possible to efficiently compute the error gradients for networks that have temporal dynamics, which opens applications to a host of problems in systems identification and control

    A geometrical analysis of global stability in trained feedback networks

    Get PDF
    Recurrent neural networks have been extensively studied in the context of neuroscience and machine learning due to their ability to implement complex computations. While substantial progress in designing effective learning algorithms has been achieved in the last years, a full understanding of trained recurrent networks is still lacking. Specifically, the mechanisms that allow computations to emerge from the underlying recurrent dynamics are largely unknown. Here we focus on a simple, yet underexplored computational setup: a feedback architecture trained to associate a stationary output to a stationary input. As a starting point, we derive an approximate analytical description of global dynamics in trained networks which assumes uncorrelated connectivity weights in the feedback and in the random bulk. The resulting mean-field theory suggests that the task admits several classes of solutions, which imply different stability properties. Different classes are characterized in terms of the geometrical arrangement of the readout with respect to the input vectors, defined in the high-dimensional space spanned by the network population. We find that such approximate theoretical approach can be used to understand how standard training techniques implement the input-output task in finite-size feedback networks. In particular, our simplified description captures the local and the global stability properties of the target solution, and thus predicts training performance

    full-FORCE: A Target-Based Method for Training Recurrent Networks

    Get PDF
    Trained recurrent networks are powerful tools for modeling dynamic neural computations. We present a target-based method for modifying the full connectivity matrix of a recurrent network to train it to perform tasks involving temporally complex input/output transformations. The method introduces a second network during training to provide suitable "target" dynamics useful for performing the task. Because it exploits the full recurrent connectivity, the method produces networks that perform tasks with fewer neurons and greater noise robustness than traditional least-squares (FORCE) approaches. In addition, we show how introducing additional input signals into the target-generating network, which act as task hints, greatly extends the range of tasks that can be learned and provides control over the complexity and nature of the dynamics of the trained, task-performing network.Comment: 20 pages, 8 figure
    • …
    corecore