2 research outputs found

    Non-Uniform Spline Quasi-Interpolation to Extract the Series Resistance in Resistive Switching Memristors for Compact Modeling Purposes

    Get PDF
    This research was funded by the Consejeria de Conocimiento, Investigacion y Universidad, Junta de Andalucia (Spain) and the FEDER programme under projects A.TIC.117.UGR18 and IE2017-5414.An advanced new methodology is presented to improve parameter extraction in resistive memories. The series resistance and some other parameters in resistive memories are obtained, making use of a two-stage algorithm, where the second one is based on quasi-interpolation on nonuniform partitions. The use of this latter advanced mathematical technique provides a numerically robust procedure, and in this manuscript, we focus on it. The series resistance, an essential parameter to characterize the circuit operation of resistive memories, is extracted from experimental curves measured in devices based on hafnium oxide as their dielectric layer. The experimental curves are highly non-linear, due to the underlying physics controlling the device operation, so that a stable numerical procedure is needed. The results also allow promising expectations in the massive extraction of new parameters that can help in the characterization of the electrical device behavior.Junta de AndaluciaEuropean Commission A.TIC.117.UGR18 IE2017-541

    Parameter extraction techniques for the analysis and modeling of resistive memories

    Get PDF
    A revision of the different numerical techniques employed to extract resistive switching (RS) and modeling parameters is presented. The set and reset voltages, commonly used for variability estimation, are calculated for different resistive memory technologies. The methodologies to extract the series resistance and the parameters linked to the charge-flux memristive modeling approach are also described. It is found that the obtained cycle-to-cycle (C2C) variability depends on the numerical technique used. This result is important, and it implies that when analyzing C2C variability, the extraction technique should be described to perform fair comparisons between different resistive memory technologies. In addition to the use of extensive experimental data for different types of resistive memories, we have also included kinetic Monte Carlo (kMC) simulations to study the formation and rupture events of the percolation paths that constitute the conductive filaments (CF) that allow resistive switching operation in filamentary unipolar and bipolar devices.Consejería de Conocimiento, Investigaci ́on y Universidad, Junta de Andalucía (Spain) and the FEDER program for the projects A.TIC.117.UGR18, B-TIC-624-UGR20 and IE2017-5414Ramón y Cajal grant No. RYC2020-030150-IFunding for open access charge: Universidad de Granada/CBU
    corecore