981 research outputs found

    On the sphere-decoding algorithm II. Generalizations, second-order statistics, and applications to communications

    Get PDF
    In Part 1, we found a closed-form expression for the expected complexity of the sphere-decoding algorithm, both for the infinite and finite lattice. We continue the discussion in this paper by generalizing the results to the complex version of the problem and using the expected complexity expressions to determine situations where sphere decoding is practically feasible. In particular, we consider applications of sphere decoding to detection in multiantenna systems. We show that, for a wide range of signal-to-noise ratios (SNRs), rates, and numbers of antennas, the expected complexity is polynomial, in fact, often roughly cubic. Since many communications systems operate at noise levels for which the expected complexity turns out to be polynomial, this suggests that maximum-likelihood decoding, which was hitherto thought to be computationally intractable, can, in fact, be implemented in real-time-a result with many practical implications. To provide complexity information beyond the mean, we derive a closed-form expression for the variance of the complexity of sphere-decoding algorithm in a finite lattice. Furthermore, we consider the expected complexity of sphere decoding for channels with memory, where the lattice-generating matrix has a special Toeplitz structure. Results indicate that the expected complexity in this case is, too, polynomial over a wide range of SNRs, rates, data blocks, and channel impulse response lengths

    Sphere-constrained ML detection for frequency-selective channels

    Get PDF
    The maximum-likelihood (ML) sequence detection problem for channels with memory is investigated. The Viterbi algorithm (VA) provides an exact solution. Its computational complexity is linear in the length of the transmitted sequence, but exponential in the channel memory length. On the other hand, the sphere decoding (SD) algorithm also solves the ML detection problem exactly, and has expected complexity which is a low-degree polynomial (often cubic) in the length of the transmitted sequence over a wide range of signal-to-noise ratios. We combine the sphere-constrained search strategy of SD with the dynamic programming principles of the VA. The resulting algorithm has the worst-case complexity determined by the VA, but often significantly lower expected complexity
    • …
    corecore