2 research outputs found

    A spatiotemporal model with visual attention for video classification

    Full text link
    High level understanding of sequential visual input is important for safe and stable autonomy, especially in localization and object detection. While traditional object classification and tracking approaches are specifically designed to handle variations in rotation and scale, current state-of-the-art approaches based on deep learning achieve better performance. This paper focuses on developing a spatiotemporal model to handle videos containing moving objects with rotation and scale changes. Built on models that combine Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) to classify sequential data, this work investigates the effectiveness of incorporating attention modules in the CNN stage for video classification. The superiority of the proposed spatiotemporal model is demonstrated on the Moving MNIST dataset augmented with rotation and scaling.Comment: Accepted by Robotics: Science and Systems 2017 Workshop on Articulated Model Trackin

    Towards Robust Image Classification Using Sequential Attention Models

    Full text link
    In this paper we propose to augment a modern neural-network architecture with an attention model inspired by human perception. Specifically, we adversarially train and analyze a neural model incorporating a human inspired, visual attention component that is guided by a recurrent top-down sequential process. Our experimental evaluation uncovers several notable findings about the robustness and behavior of this new model. First, introducing attention to the model significantly improves adversarial robustness resulting in state-of-the-art ImageNet accuracies under a wide range of random targeted attack strengths. Second, we show that by varying the number of attention steps (glances/fixations) for which the model is unrolled, we are able to make its defense capabilities stronger, even in light of stronger attacks --- resulting in a "computational race" between the attacker and the defender. Finally, we show that some of the adversarial examples generated by attacking our model are quite different from conventional adversarial examples --- they contain global, salient and spatially coherent structures coming from the target class that would be recognizable even to a human, and work by distracting the attention of the model away from the main object in the original image
    corecore