4,426 research outputs found

    The Convergence of Sparsified Gradient Methods

    Full text link
    Distributed training of massive machine learning models, in particular deep neural networks, via Stochastic Gradient Descent (SGD) is becoming commonplace. Several families of communication-reduction methods, such as quantization, large-batch methods, and gradient sparsification, have been proposed. To date, gradient sparsification methods - where each node sorts gradients by magnitude, and only communicates a subset of the components, accumulating the rest locally - are known to yield some of the largest practical gains. Such methods can reduce the amount of communication per step by up to three orders of magnitude, while preserving model accuracy. Yet, this family of methods currently has no theoretical justification. This is the question we address in this paper. We prove that, under analytic assumptions, sparsifying gradients by magnitude with local error correction provides convergence guarantees, for both convex and non-convex smooth objectives, for data-parallel SGD. The main insight is that sparsification methods implicitly maintain bounds on the maximum impact of stale updates, thanks to selection by magnitude. Our analysis and empirical validation also reveal that these methods do require analytical conditions to converge well, justifying existing heuristics.Comment: NIPS 2018 - Advances in Neural Information Processing Systems; Authors in alphabetic orde

    Distributed Private Online Learning for Social Big Data Computing over Data Center Networks

    Full text link
    With the rapid growth of Internet technologies, cloud computing and social networks have become ubiquitous. An increasing number of people participate in social networks and massive online social data are obtained. In order to exploit knowledge from copious amounts of data obtained and predict social behavior of users, we urge to realize data mining in social networks. Almost all online websites use cloud services to effectively process the large scale of social data, which are gathered from distributed data centers. These data are so large-scale, high-dimension and widely distributed that we propose a distributed sparse online algorithm to handle them. Additionally, privacy-protection is an important point in social networks. We should not compromise the privacy of individuals in networks, while these social data are being learned for data mining. Thus we also consider the privacy problem in this article. Our simulations shows that the appropriate sparsity of data would enhance the performance of our algorithm and the privacy-preserving method does not significantly hurt the performance of the proposed algorithm.Comment: ICC201

    Leveraging Crowdsourcing Data For Deep Active Learning - An Application: Learning Intents in Alexa

    Full text link
    This paper presents a generic Bayesian framework that enables any deep learning model to actively learn from targeted crowds. Our framework inherits from recent advances in Bayesian deep learning, and extends existing work by considering the targeted crowdsourcing approach, where multiple annotators with unknown expertise contribute an uncontrolled amount (often limited) of annotations. Our framework leverages the low-rank structure in annotations to learn individual annotator expertise, which then helps to infer the true labels from noisy and sparse annotations. It provides a unified Bayesian model to simultaneously infer the true labels and train the deep learning model in order to reach an optimal learning efficacy. Finally, our framework exploits the uncertainty of the deep learning model during prediction as well as the annotators' estimated expertise to minimize the number of required annotations and annotators for optimally training the deep learning model. We evaluate the effectiveness of our framework for intent classification in Alexa (Amazon's personal assistant), using both synthetic and real-world datasets. Experiments show that our framework can accurately learn annotator expertise, infer true labels, and effectively reduce the amount of annotations in model training as compared to state-of-the-art approaches. We further discuss the potential of our proposed framework in bridging machine learning and crowdsourcing towards improved human-in-the-loop systems
    • …
    corecore