12,048 research outputs found

    Information Filtering on Coupled Social Networks

    Full text link
    In this paper, based on the coupled social networks (CSN), we propose a hybrid algorithm to nonlinearly integrate both social and behavior information of online users. Filtering algorithm based on the coupled social networks, which considers the effects of both social influence and personalized preference. Experimental results on two real datasets, \emph{Epinions} and \emph{Friendfeed}, show that hybrid pattern can not only provide more accurate recommendations, but also can enlarge the recommendation coverage while adopting global metric. Further empirical analyses demonstrate that the mutual reinforcement and rich-club phenomenon can also be found in coupled social networks where the identical individuals occupy the core position of the online system. This work may shed some light on the in-depth understanding structure and function of coupled social networks

    Collaborative Filtering with Topic and Social Latent Factors Incorporating Implicit Feedback

    Full text link
    Recommender systems (RSs) provide an effective way of alleviating the information overload problem by selecting personalized items for different users. Latent factors based collaborative filtering (CF) has become the popular approaches for RSs due to its accuracy and scalability. Recently, online social networks and user-generated content provide diverse sources for recommendation beyond ratings. Although {\em social matrix factorization} (Social MF) and {\em topic matrix factorization} (Topic MF) successfully exploit social relations and item reviews, respectively, both of them ignore some useful information. In this paper, we investigate the effective data fusion by combining the aforementioned approaches. First, we propose a novel model {\em \mbox{MR3}} to jointly model three sources of information (i.e., ratings, item reviews, and social relations) effectively for rating prediction by aligning the latent factors and hidden topics. Second, we incorporate the implicit feedback from ratings into the proposed model to enhance its capability and to demonstrate its flexibility. We achieve more accurate rating prediction on real-life datasets over various state-of-the-art methods. Furthermore, we measure the contribution from each of the three data sources and the impact of implicit feedback from ratings, followed by the sensitivity analysis of hyperparameters. Empirical studies demonstrate the effectiveness and efficacy of our proposed model and its extension.Comment: 27 pages, 11 figures, 6 tables, ACM TKDD 201

    The state-of-the-art in personalized recommender systems for social networking

    Get PDF
    With the explosion of Web 2.0 application such as blogs, social and professional networks, and various other types of social media, the rich online information and various new sources of knowledge flood users and hence pose a great challenge in terms of information overload. It is critical to use intelligent agent software systems to assist users in finding the right information from an abundance of Web data. Recommender systems can help users deal with information overload problem efficiently by suggesting items (e.g., information and products) that match users’ personal interests. The recommender technology has been successfully employed in many applications such as recommending films, music, books, etc. The purpose of this report is to give an overview of existing technologies for building personalized recommender systems in social networking environment, to propose a research direction for addressing user profiling and cold start problems by exploiting user-generated content newly available in Web 2.0

    Psychological elements explaining the consumer's adoption and use of a website recommendation system: A theoretical framework proposal

    Get PDF
    The purpose of this paper is to understand, with an emphasis on the psychological perspective of the research problem, the consumer's adoption and use of a certain web site recommendation system as well as the main psychological outcomes involved. The approach takes the form of theoretical modelling. Findings: A conceptual model is proposed and discussed. A total of 20 research propositions are theoretically analyzed and justified. Research limitations/implications: The theoretical discussion developed here is not empirically validated. This represents an opportunity for future research. Practical implications: The ideas extracted from the discussion of the conceptual model should be a help for recommendation systems designers and web site managers, so that they may be more aware, when working with such systems, of the psychological process consumers undergo when interacting with them. In this regard, numerous practical reflections and suggestions are presented

    The influence of national culture on the attitude towards mobile recommender systems

    Get PDF
    This is the post-print version of the final paper published in Technological Forecasting and Social Change. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2013 Elsevier B.V.This study aimed to identify factors that influence user attitudes towards mobile recommender systems and to examine how these factors interact with cultural values to affect attitudes towards this technology. Based on the theory of reasoned action, belief factors for mobile recommender systems are identified in three dimensions: functional, contextual, and social. Hypotheses explaining different impacts of cultural values on the factors affecting attitudes were also proposed. The research model was tested based on data collected in China, South Korea, and the United Kingdom. Findings indicate that functional and social factors have significant impacts on user attitudes towards mobile recommender systems. The relationships between belief factors and attitudes are moderated by two cultural values: collectivism and uncertainty avoidance. The theoretical and practical implications of applying theory of reasoned action and innovation diffusion theory to explain the adoption of new technologies in societies with different cultures are also discussed.National Research Foundation of Korea Grant funded by the Korean governmen
    corecore