3 research outputs found

    Smartphone-Assisted Glaucoma Screening in Patients With Type 2 Diabetes: a Pilot Study

    Get PDF
    We aimed to determine true and false positives of glaucoma screening, relying solely on photos of the retina, taken with a smartphone. We performed a descriptive and analytical study on patients with type 2 diabetes at the National Obesity Centre, Yaoundé, Cameroon. Participating patients had retinal photography sessions using an iPhone 5s (iOS 10.3.3; Apple, Cupertino, CA) coupled to the Make in India Retinal Camera (MIIRetCam; MIIRetCam Inc., Coimbatore, TN, India). Obtained pictures of the retina were stored and transferred via the internet to an ophthalmologist to assess glaucoma. Selected patients were then invited to undergo a conventional ophthalmological examination to confirm the diagnosis. A total of 395 patients were screened, 39 (including 20 women) were diagnosed with suspicion of glaucoma based on retinal photos, a prevalence rate of 9.87%. The following signs were found; C/D ≥0.5 in 64.1% (25/39), asymmetric C/D >0.2 in 35.9% (14/39), papillary haemorrhage in 10.2% (4/39) and retinal nerve fibre deficiency in 2.5% (1/39). Only 14 of 39 patients with suspicion of glaucoma were examined, giving a lost-to-follow-up rate of 64.1%. Chronic open-angle glaucoma was confirmed in 8 patients (true positives) and absent in 6 patients (false positives). The prevalence of smartphone-detected glaucoma and lost-to-follow-up rates were high. So we need to improve this type of screening, with additional tests like transpalpebral applanation tonometer and the smartphone Frequency Doubling Technique visual field combined with better education of patients to increase their adherence to follow-up

    Smartphone-Assisted Glaucoma Screening in Patients With Type 2 Diabetes: a Pilot Study

    Get PDF
    We aimed to determine true and false positives of glaucoma screening, relying solely on photos of the retina, taken with a smartphone. We performed a descriptive and analytical study on patients with type 2 diabetes at the National Obesity Centre, Yaoundé, Cameroon. Participating patients had retinal photography sessions using an iPhone 5s (iOS 10.3.3; Apple, Cupertino, CA) coupled to the Make in India Retinal Camera (MIIRetCam; MIIRetCam Inc., Coimbatore, TN, India). Obtained pictures of the retina were stored and transferred via the internet to an ophthalmologist to assess glaucoma. Selected patients were then invited to undergo a conventional ophthalmological examination to confirm the diagnosis. A total of 395 patients were screened, 39 (including 20 women) were diagnosed with suspicion of glaucoma based on retinal photos, a prevalence rate of 9.87%. The following signs were found; C/D ≥0.5 in 64.1% (25/39), asymmetric C/D >0.2 in 35.9% (14/39), papillary haemorrhage in 10.2% (4/39) and retinal nerve fibre deficiency in 2.5% (1/39). Only 14 of 39 patients with suspicion of glaucoma were examined, giving a lost-to-follow-up rate of 64.1%. Chronic open-angle glaucoma was confirmed in 8 patients (true positives) and absent in 6 patients (false positives). The prevalence of smartphone-detected glaucoma and lost-to-follow-up rates were high. So we need to improve this type of screening, with additional tests like transpalpebral applanation tonometer and the smartphone Frequency Doubling Technique visual field combined with better education of patients to increase their adherence to follow-up

    Computer Vision Based Early Intraocular Pressure Assessment From Frontal Eye Images

    Get PDF
    Intraocular Pressure (IOP) in general, refers to the pressure in the eyes. Gradual increase of IOP and high IOP are conditions or symptoms that may lead to certain diseases such as glaucoma, and therefore, must be closely monitored. While the pressure in the eye increases, different parts of the eye may become affected until the eye parts are damaged. An effective way to prevent rise in eye pressure is by early detection. Exiting IOP monitoring tools include eye tests at clinical facilities and computer-aided techniques from fundus and optic nerves images. In this work, a new computer vision-based smart healthcare framework is presented to evaluate the intraocular pressure risk from frontal eye images early-on. The framework determines the status of IOP by analyzing frontal eye images using image processing and machine learning techniques. A database of images from the Princess Basma Hospital was used in this work. The database contains 400 eye images; 200 images with normal IOP and 200 high eye pressure case images. This study proposes novel features for IOP determination from two experiments. The first experiment extracts the sclera using circular hough transform, after which four features are extracted from the whole sclera. These features are mean redness level, red area percentage, contour area and contour height. The pupil/iris diameter ratio feature is also extracted from the frontal eye image after a series of pre-processing techniques. The second experiment extracts the sclera and iris segment using a fully conventional neural network technique, after which six features are extracted from only part of the segmented sclera and iris. The features include mean redness level, red area percentage, contour area, contour distance and contour angle along with the pupil/iris diameter ratio. Once the features are extracted, classification techniques are applied in order to train and test the images and features to obtain the status of the patients in terms of eye pressure. For the first experiment, neural network and support vector machine algorithms were adopted in order to detect the status of intraocular pressure. The second experiment adopted support vector machine and decision tree algorithms to detect the status of intraocular pressure. For both experiments, the framework detects the status of IOP (normal or high IOP) with high accuracies. This computer vison-based approach produces evidence of the relationship between the extracted frontal eye image features and IOP, which has not been previously investigated through automated image processing and machine learning techniques from frontal eye images
    corecore