269 research outputs found

    A Study of IEEE 802.15.4 Security Framework for Wireless Body Area Network

    Full text link
    A Wireless Body Area Network (WBAN) is a collection of low-power and lightweight wireless sensor nodes that are used to monitor the human body functions and the surrounding environment. It supports a number of innovative and interesting applications, including ubiquitous healthcare and Consumer Electronics (CE) applications. Since WBAN nodes are used to collect sensitive (life-critical) information and may operate in hostile environments, they require strict security mechanisms to prevent malicious interaction with the system. In this paper, we first highlight major security requirements and Denial of Service (DoS) attacks in WBAN at Physical, Medium Access Control (MAC), Network, and Transport layers. Then we discuss the IEEE 802.15.4 security framework and identify the security vulnerabilities and major attacks in the context of WBAN. Different types of attacks on the Contention Access Period (CAP) and Contention Free Period (CFP) parts of the superframe are analyzed and discussed. It is observed that a smart attacker can successfully corrupt an increasing number of GTS slots in the CFP period and can considerably affect the Quality of Service (QoS) in WBAN (since most of the data is carried in CFP period). As we increase the number of smart attackers the corrupted GTS slots are eventually increased, which prevents the legitimate nodes to utilize the bandwidth efficiently. This means that the direct adaptation of IEEE 802.15.4 security framework for WBAN is not totally secure for certain WBAN applications. New solutions are required to integrate high level security in WBAN.Comment: 14 pages, 7 figures, 2 table

    A comprehensive survey of wireless body area networks on PHY, MAC, and network layers solutions

    Get PDF
    Recent advances in microelectronics and integrated circuits, system-on-chip design, wireless communication and intelligent low-power sensors have allowed the realization of a Wireless Body Area Network (WBAN). A WBAN is a collection of low-power, miniaturized, invasive/non-invasive lightweight wireless sensor nodes that monitor the human body functions and the surrounding environment. In addition, it supports a number of innovative and interesting applications such as ubiquitous healthcare, entertainment, interactive gaming, and military applications. In this paper, the fundamental mechanisms of WBAN including architecture and topology, wireless implant communication, low-power Medium Access Control (MAC) and routing protocols are reviewed. A comprehensive study of the proposed technologies for WBAN at Physical (PHY), MAC, and Network layers is presented and many useful solutions are discussed for each layer. Finally, numerous WBAN applications are highlighted

    QoS in Body Area Networks: A survey

    Get PDF
    Body Area Networks (BANs) are becoming increasingly popular and have shown great potential in real-time monitoring of the human body. With the promise of being cost-effective and unobtrusive and facilitating continuous monitoring, BANs have attracted a wide range of monitoring applications, including medical and healthcare, sports, and rehabilitation systems. Most of these applications are real time and life critical and require a strict guarantee of Quality of Service (QoS) in terms of timeliness, reliability, and so on. Recently, there has been a number of proposals describing diverse approaches or frameworks to achieve QoS in BANs (i.e., for different layers or tiers and different protocols). This survey put these individual efforts into perspective and presents a more holistic view of the area. In this regard, this article identifies a set of QoS requirements for BAN applications and shows how these requirements are linked in a three-tier BAN system and presents a comprehensive review of the existing proposals against those requirements. In addition, open research issues, challenges, and future research directions in achieving these QoS in BANs are highlighted.</jats:p

    Intelligent Routing Metric for Wireless Body Area Networks

    Get PDF
    Routing in Wireless Body Area Networks (WBANs) is a critical requirement due to its dynamic behaviour. This paper proposes an intelligent framework for link cost evaluation. A suitable Quality of Service (QoS) parameters based function has been proposed. The sensors in WBANs would be capable of computing the Link Cost (LC) function based upon the current values of QoS parameters: throughput, delay of the link and residual energy of the sensor. A fuzzy logic based system is proposed at the sensor to evaluate the LC. Nodes of architecture evaluate a set of possible paths between source-terminal pairs. This LC is then used to evaluate the suitable path for the routing

    Resource Management in E-health Systems

    Get PDF
    E-health systems are the information and communication systems deployed to improve quality and efficiency of public health services. Within E-health systems, wearable sensors are deployed to monitor physiology information not only in hospitals, but also in our daily lives under all types of activities; wireless body area networks (WBANs) are adopted to transmit physiology information to smartphones; and cloud servers are utilized for timely diagnose and disease treatment. The integrated services provided by E-health systems could be more convenient, reliable, patient centric and bring more economic healthcare services. Despite of many benefits, e-health systems face challenges among which resource management is the most important one as wearable sensors are energy and computing capability limited, and medical information has stringent quality of service (QoS) requirements in terms of delay and reliability. This thesis presents resource management mechanisms, including transmission power allocation schemes for wearable sensors, Medium Access Control (MAC) for WBANs, and resource sharing schemes among cloud networks, that can efficiently exploit the limited resources to achieve satisfactory QoS. First, we address how wearable sensors could energy efficiently transmit medical information with stringent QoS requirements to a smart phone. We first investigate how to provide worst-case delay provisioning for vital physiology information. Sleep scheduling and opportunistic channel access are exploited to reduce energy consumption in idle listening and increase energy efficiency. Considering dynamic programming suffers from curse of dimensionality, Lyapunov optimization formulation is established to derive a low complexity two-step transmission power allocation algorithm. We analyze the conditions under which the proposed algorithm could guarantee worst-case delay. We then investigate the impacts of peak power constraint and statistical QoS provisioning. An optimal transmission power allocation scheme under a peak power constraint is derived, and followed by an efficient calculation method. Applying duality gap analysis, we characterize the upper bound of the extra average transmission power incurred due a peak power constraint. We demonstrate that when the peak power constraint is stringent, the proposed constant power scheme is suitable for wearable sensors for its performance is close to optimal. Further, we show that the peak power constraint is the bottleneck for wearable sensors to provide stringent statistical QoS provisioning. Second, WBANs can provide low-cost and timely healthcare services and are expected to be widely adopted in hospitals. We develop a centralized MAC layer resource management scheme for WBANs, with a focus on inter-WBAN interference mitigation and sensor power consumption reduction. Based on the channel state and buffer state information reported by smart phones deployed in each WBAN, channel access allocation is performed by a central controller to maximize the network throughput. Note that sensors have insufficient energy and computing capability to timely provide all the necessary information for channel resource management, which deteriorates the network performance. We exploit the temporal correlation of body area channel such that channel state reports from sensors are minimized. We then formulate the MAC design problem as a partially observable optimization problem and develop a myopic policy accordingly. Third, cloud computing is expected to meet the rising computing demands. Both private clouds, which aim at patients in their regions, and public clouds, which serve general public, are adopted. Reliability control and QoS provisioning are the core issues of private clouds and public clouds, respectively. A framework, which exploits the abundant resource of private clouds in time domain, to enable cooperation among private clouds and public clouds, is proposed. Considering the cost of service failure in e-health system, the first time failure probability is adopted as reliability measures for private clouds. An algorithm is proposed to minimize the failure probability, and is proven to be optimal. Then, we propose an e-health monitoring system with minimum service delay and privacy preservation by exploiting geo-distributed clouds. In the system, the resource management scheme enables the distributed cloud servers to cooperatively assign the servers to the requested users under a load balance condition. Thus, the service delay for users is minimized. In addition, a traffic shaping algorithm is proposed, which converts the user health data traffic to the non-health data traffic such that the capability of traffic analysis attacks is largely reduced. In summary, we believe the research results developed in this dissertation can provide insights for efficient transmission power allocation for wearable sensor, can offer practical MAC layer solutions for WBANs in hospital environment, and can improve the QoS provisioning provided by cloud networks in e-health systems

    Mitigation of packet loss with end-to-end delay in wireless body area network applications

    Get PDF
    The wireless body area network (WBAN) has been proposed to offer a solution to the problem of population ageing, shortage in medical facilities and different chronic diseases. The development of this technology has been further fueled by the demand for real-time application for monitoring these cases in networks. The integrity of communication is constrained by the loss of packets during communication affecting the reliability of WBAN. Mitigating the loss of packets and ensuring the performance of the network is a challenging task that has sparked numerous studies over the years. The WBAN technology as a problem of reducing network lifetime; thus, in this paper, we utilize cooperative routing protocol (CRP) to improve package delivery via end-to-end latency and increase the length of the network lifetime. The end-to-end latency was used as a metric to determine the significance of CRP in WBAN routing protocols. The CRP increased the rate of transmission of packets to the sink and mitigate packet loss. The proposed solution has shown that the end-to-end delay in the WBAN is considerably reduced by applying the cooperative routing protocol. The CRP technique attained a delivery ratio of 0.8176 compared to 0.8118 when transmitting packets in WBAN

    Resource Allocation in Wireless Body Area Networks: A Smart City Perspective

    Get PDF
    Healthcare is an essential service in smart cities. To deploy healthcare systems in such cities, personal health monitoring systems, infrastructure for collecting and delivering individual data, and a system for diagnosing symptoms are required. For the first requirement, wireless body area networks (WBANs) have recently received considerable attention from research communities. Owing to their main distinguishable features from general wireless sensor networks, research challenges regarding WBANs have been focused on network topology around the body and implanted nodes, efficient resource allocation, and power control. In this chapter, we provide a comprehensive discussion on the emerging research trends in the area of wireless sensor networks and a discussion of WBANs in terms of their resource allocation

    A Novel Framework for Software Defined Wireless Body Area Network

    Full text link
    Software Defined Networking (SDN) has gained huge popularity in replacing traditional network by offering flexible and dynamic network management. It has drawn significant attention of the researchers from both academia and industries. Particularly, incorporating SDN in Wireless Body Area Network (WBAN) applications indicates promising benefits in terms of dealing with challenges like traffic management, authentication, energy efficiency etc. while enhancing administrative control. This paper presents a novel framework for Software Defined WBAN (SDWBAN), which brings the concept of SDN technology into WBAN applications. By decoupling the control plane from data plane and having more programmatic control would assist to overcome the current lacking and challenges of WBAN. Therefore, we provide a conceptual framework for SDWBAN with packet flow model and a future direction of research pertaining to SDWBAN.Comment: Presented on 8th International Conference on Intelligent Systems, Modelling and Simulatio
    corecore