978 research outputs found

    Stability Region of a Slotted Aloha Network with K-Exponential Backoff

    Full text link
    Stability region of random access wireless networks is known for only simple network scenarios. The main problem in this respect is due to interaction among queues. When transmission probabilities during successive transmissions change, e.g., when exponential backoff mechanism is exploited, the interactions in the network are stimulated. In this paper, we derive the stability region of a buffered slotted Aloha network with K-exponential backoff mechanism, approximately, when a finite number of nodes exist. To this end, we propose a new approach in modeling the interaction among wireless nodes. In this approach, we model the network with inter-related quasi-birth-death (QBD) processes such that at each QBD corresponding to each node, a finite number of phases consider the status of the other nodes. Then, by exploiting the available theorems on stability of QBDs, we find the stability region. We show that exponential backoff mechanism is able to increase the area of the stability region of a simple slotted Aloha network with two nodes, more than 40\%. We also show that a slotted Aloha network with exponential backoff may perform very near to ideal scheduling. The accuracy of our modeling approach is verified by simulation in different conditions.Comment: 30 pages, 6 figure

    Channel-Aware Random Access in the Presence of Channel Estimation Errors

    Full text link
    In this work, we consider the random access of nodes adapting their transmission probability based on the local channel state information (CSI) in a decentralized manner, which is called CARA. The CSI is not directly available to each node but estimated with some errors in our scenario. Thus, the impact of imperfect CSI on the performance of CARA is our main concern. Specifically, an exact stability analysis is carried out when a pair of bursty sources are competing for a common receiver and, thereby, have interdependent services. The analysis also takes into account the compound effects of the multipacket reception (MPR) capability at the receiver. The contributions in this paper are twofold: first, we obtain the exact stability region of CARA in the presence of channel estimation errors; such an assessment is necessary as the errors in channel estimation are inevitable in the practical situation. Secondly, we compare the performance of CARA to that achieved by the class of stationary scheduling policies that make decisions in a centralized manner based on the CSI feedback. It is shown that the stability region of CARA is not necessarily a subset of that of centralized schedulers as the MPR capability improves.Comment: The material in this paper was presented in part at the IEEE International Symposium on Information Theory, Cambridge, MA, USA, July 201

    Measurement-Adaptive Cellular Random Access Protocols

    Get PDF
    This work considers a single-cell random access channel (RACH) in cellular wireless networks. Communications over RACH take place when users try to connect to a base station during a handover or when establishing a new connection. Within the framework of Self-Organizing Networks (SONs), the system should self- adapt to dynamically changing environments (channel fading, mobility, etc.) without human intervention. For the performance improvement of the RACH procedure, we aim here at maximizing throughput or alternatively minimizing the user dropping rate. In the context of SON, we propose protocols which exploit information from measurements and user reports in order to estimate current values of the system unknowns and broadcast global action-related values to all users. The protocols suggest an optimal pair of user actions (transmission power and back-off probability) found by minimizing the drift of a certain function. Numerical results illustrate considerable benefits of the dropping rate, at a very low or even zero cost in power expenditure and delay, as well as the fast adaptability of the protocols to environment changes. Although the proposed protocol is designed to minimize primarily the amount of discarded users per cell, our framework allows for other variations (power or delay minimization) as well.Comment: 31 pages, 13 figures, 3 tables. Springer Wireless Networks 201
    • …
    corecore