653 research outputs found

    Operationalizing the circular city model for naples' city-port: A hybrid development strategy

    Get PDF
    The city-port context involves a decisive reality for the economic development of territories and nations, capable of significantly influencing the conditions of well-being and quality of life, and of making the Circular City Model (CCM) operational, preserving and enhancing seas and marine resources in a sustainable way. This can be achieved through the construction of appropriate production and consumption models, with attention to relations with the urban and territorial system. This paper presents an adaptive decision-making process for Naples (Italy) commercial port's development strategies, aimed at re-establishing a sustainable city-port relationship and making Circular Economy (CE) principles operative. The approach has aimed at implementing a CCM by operationalizing European recommendations provided within both the Sustainable Development Goals (SDGs) framework-specifically focusing on goals 9, 11 and 12-and the Maritime Spatial Planning European Directive 2014/89, to face conflicts about the overlapping areas of the city-port through multidimensional evaluations' principles and tools. In this perspective, a four-step methodological framework has been structured applying a place-based approach with mixed evaluation methods, eliciting soft and hard knowledge domains, which have been expressed and assessed by a core set of Sustainability Indicators (SI), linked to SDGs. The contribution outcomes have been centred on the assessment of three design alternatives for the East Naples port and the development of a hybrid regeneration scenario consistent with CE and sustainability principles. The structured decision-making process has allowed us to test how an adaptive approach can expand the knowledge base underpinning policy design and decisions to achieve better outcomes and cultivate a broad civic and technical engagement, that can enhance the legitimacy and transparency of policies

    A Digital Pattern Methodology supporting Railway Industries in Portfolio Management

    Get PDF
    The object of this paper is the development of a decision support system involved in the bidding for invitations to tender in the railway field. The proposed methodology is based on the characterization of the whole train and its components, through several attributes according to a digital pattern approach. In particular some key components were chosen such as the traction motor, the bogie and the auxiliary equipment converter. The system measures the extent to which the products offered by the company fit the one required by the customer, comparing the homologous attributes. Such analysis is called ‘adopt/adapt/innovate’ (AAI). In this way it is possible to identify products already designed that fully or partly fit what required, obtaining huge benefits in terms of effectiveness and efficiency

    Dispatching and Rescheduling Tasks and Their Interactions with Travel Demand and the Energy Domain: Models and Algorithms

    Get PDF
    Abstract The paper aims to provide an overview of the key factors to consider when performing reliable modelling of rail services. Given our underlying belief that to build a robust simulation environment a rail service cannot be considered an isolated system, also the connected systems, which influence and, in turn, are influenced by such services, must be properly modelled. For this purpose, an extensive overview of the rail simulation and optimisation models proposed in the literature is first provided. Rail simulation models are classified according to the level of detail implemented (microscopic, mesoscopic and macroscopic), the variables involved (deterministic and stochastic) and the processing techniques adopted (synchronous and asynchronous). By contrast, within rail optimisation models, both planning (timetabling) and management (rescheduling) phases are discussed. The main issues concerning the interaction of rail services with travel demand flows and the energy domain are also described. Finally, in an attempt to provide a comprehensive framework an overview of the main metaheuristic resolution techniques used in the planning and management phases is shown

    Key technologies for safe and autonomous drones

    Get PDF
    Drones/UAVs are able to perform air operations that are very difficult to be performed by manned aircrafts. In addition, drones' usage brings significant economic savings and environmental benefits, while reducing risks to human life. In this paper, we present key technologies that enable development of drone systems. The technologies are identified based on the usages of drones (driven by COMP4DRONES project use cases). These technologies are grouped into four categories: U-space capabilities, system functions, payloads, and tools. Also, we present the contributions of the COMP4DRONES project to improve existing technologies. These contributions aim to ease drones’ customization, and enable their safe operation.This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 826610. The JU receives support from the European Union’s Horizon 2020 research and innovation programme and Spain, Austria, Belgium, Czech Republic, France, Italy, Latvia, Netherlands. The total project budget is 28,590,748.75 EUR (excluding ESIF partners), while the requested grant is 7,983,731.61 EUR to ECSEL JU, and 8,874,523.84 EUR of National and ESIF Funding. The project has been started on 1st October 2019

    Eine mikrosimulationsbasierte Methode zur Beurteilung der Leistungsfähigkeit von Shared Space

    Get PDF
    Shared space is a concept of urban street design which implies the creation of a level surface within the whole road reserve and is aimed at encouraging different road users to interact spontaneously and to negotiate priority with each other. To build successful shared spaces, traffic engineers can rely at present on specific guidelines as well as technical reports. Nevertheless, there is no method available to compute the performance of shared spaces in terms of Level Of Service (LOS). In order to address this gap, a new indicator of traffic quality for pedestrians is being developed. This measure of performance considers aspects of comfort related to the crossing, which pedestrians use to go from one side of the roadway to the other. During this movement, discomfort is generated by the necessity to solve the conflicts with vehicles. Therefore, factors which potentially influence comfort are mathematically formulated. Later, the performance indicator can be calibrated on the basis of the opinion of a group of respondents, who evaluated real-world crossing movements in video sequences. The effectiveness and usability of the developed indicator is demonstrated in an exemplary case study. A shared street in the district of Bergedorf, Hamburg (D) is selected and filmed. To reproduce the interaction of road users and the mechanism of space negotiation, an innovative modeling approach based on social force model (SFM) is proposed. The model is calibrated and implemented in a Java-based simulation tool. Alternative shared space scenarios, as well as conventional ones with space segregation, are simulated. The goal of this dissertation is to establish a method to evaluate the performances of shared spaces through traffic microsimulation. This method includes the data survey and acquisition, the definition of performance indicators, the development of a microsimulation approach, the calibration of the motion model on the basis of real-world data and finally the execution of simulations to collect the results. In addition, this work shows the necessity to employ a comfort-based indicator for pedestrian traffic quality in shared spaces. The benefits of this approach, with respect to conventional efficiency-based indicators as time delay, is properly shown in real-world situations and successively demonstrated by help of statistical methods.Shared Space ist ein Konzept der urbanen Straßengestaltung, das die Schaffung von niveaugleichen Zonen im gesamten Straßenquerschnitt beinhaltet, und darauf abzielt, die verschiedenen Verkehrsteilnehmer zu ermutigen, spontan zu interagieren und den Vorrang untereinander auszuhandeln. Um erfolgreiche Shared Spaces zu gestalten, können sich Ingenieure derzeit auf spezifische Richtlinien, sowie auf technische Berichte stützen. Dennoch gibt es keine Methode, um die Qualität des Shared Space im Hinblick auf den Level of Service (LOS) zu kalkulieren. Daher wird ein neuer Verkehrsqualitätsindikator für Fußgänger entwickelt. Diese Erfolgsmessgröße berücksichtigt Komfortaspekte hinsichtlich der von Fußgängern zur Querung der Straßen benutzten Übergänge. Während der Überquerung wird durch das Aushandeln des Vorrangs mit den Fahrzeugen ein Unbehagen erzeugt. Daher werden potentiell komfortbeeinflussende Faktoren mathematisch formuliert. Später kann der Leistungsindikator auf Basis der Ansicht einer Umfragegruppe, die reale Straßenüberquerungen in Videosequenzen auswertet, kalibriert werden. Die Effektivität und Tauglichkeit des entwickelten Indikators wird in einer exemplarischen Fallstudie im Hamburger Bezirk Bergedorf demonstriert. Hierzu wird der dortige Shared Space gefilmt. Um die Interaktion von Verkehrsteilnehmern und die Wirkungsweise der Verkehrsraumaushandlung nachzustellen, wird ein innovativer Modellierungsansatz, der auf dem sozialen Kräftemodell basiert, empfohlen. Das Modell wird in einem Java-basierten Simulationstool kalibriert und implementiert. Verschiedene Shared Space Arten und konventionelle Szenarien mit Raumtrennung werden simuliert. Das Ziel dieser Dissertation ist es, ein Verfahren zur Auswertung der Performances von Shared Spaces durch Verkehrsmikrosimulation zu entwickeln. Dieses Verfahren beinhaltet die Datenerhebung und –erfassung, die Definition der Leistungsindikatoren, die Entwicklung eines Mikrosimulationsansatzes und die Kalibrierung des Bewegungsmodells auf Basis realer Daten. Zudem werden Simulationen durchgeführt, um Ergebnisse zu sammeln. Des Weiteren zeigt diese Arbeit die Notwendigkeit, einen komfortbasierten Indikator für die Verkehrsqualität der Fußgänger in Shared Spaces zu verwenden. Die Vorteile dieses Ansatzes, gegenüber konventionellen, effizienzbasierten Indikatoren wie z.B. Zeitverzögerungen, werden entsprechend in praxistauglichen Situationen dargestellt und sukzessiv mittels statistischer Verfahren veranschaulicht

    Distributed Decision Making: A Multiagent Decision Support System For Street Management

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2005Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2005Bu çalışmada, işbirlikçi dağıtık bir insan organizasyonundaki karar etkinliğinin, taktik ve stratejik seviyelerde dağıtık karar destek araçlarıyla arttırılabileceği öngörülmüştür. Çok ajanlı mimariye dayalı ve kullanıcıların karar süreçlerinde aktif olarak yer aldığı yeni bir dağıtık karar destek sistemi önerilmiştir. Sistemin performans modeli bulanık bilişsel haritalama yönetimi kullanılarak oluşturulmuştur. Önerilen sistemin uygulanabilirliği, Java ortamında geliştirilen bir örnek program ile test edilmiştir ve uygulama alanı olarak dağıtık karar vermenin iyi bir örneği olan cadde yönetim sistemi seçilmiştir. Örnek uygulama başarıyla gerçekleştirilmiştir.In this study, it is suggested that, decisional effectiveness in a cooperative distributed human system can be increased by distributed decision support tools at tactical and strategic levels. A new distributed decision support system based on multiagent architecture is proposed, in which human agents are also actively involved in the decision process. The performance model of the system was established using fuzzy cognitive map approach. The applicability of the proposed system was tested on a sample implementation program developed in Java environment and street management is selected as the application domain since it is a good example of distributed decision making. The sample implementation was successfully realized.Yüksek LisansM.Sc

    Modelling of interactions between rail service and travel demand: a passenger-oriented analysis

    Get PDF
    The proposed research is situated in the field of design, management and optimisation in railway network operations. Rail transport has in its favour several specific features which make it a key factor in public transport management, above all in high-density contexts. Indeed, such a system is environmentally friendly (reduced pollutant emissions), high-performing (high travel speeds and low values of headways), competitive (low unitary costs per seat-km or carried passenger-km) and presents a high degree of adaptability to intermodality. However, it manifests high vulnerability in the case of breakdowns. This occurs because a faulty convoy cannot be easily overtaken and, sometimes, cannot be easily removed from the line, especially in the case of isolated systems (i.e. systems which are not integrated into an effective network) or when a breakdown occurs on open tracks. Thus, re-establishing ordinary operational conditions may require excessive amounts of time and, as a consequence, an inevitable increase in inconvenience (user generalised cost) for passengers, who might decide to abandon the system or, if already on board, to exclude the railway system from their choice set for the future. It follows that developing appropriate techniques and decision support tools for optimising rail system management, both in ordinary and disruption conditions, would consent a clear influence of the modal split in favour of public transport and, therefore, encourage an important reduction in the externalities caused by the use of private transport, such as air and noise pollution, traffic congestion and accidents, bringing clear benefits to the quality of life for both transport users and non-users (i.e. individuals who are not system users). Managing to model such a complex context, based on numerous interactions among the various components (i.e. infrastructure, signalling system, rolling stock and timetables) is no mean feat. Moreover, in many cases, a fundamental element, which is the inclusion of the modelling of travel demand features in the simulation of railway operations, is neglected. Railway transport, just as any other transport system, is not finalised to itself, but its task is to move people or goods around, and, therefore, a realistic and accurate cost-benefit analysis cannot ignore involved flows features. In particular, considering travel demand into the analysis framework presents a two-sided effect. Primarily, it leads to introduce elements such as convoy capacity constraints and the assessment of dwell times as flow-dependent factors which make the simulation as close as possible to the reality. Specifically, the former allows to take into account the eventuality that not all passengers can board the first arriving train, but only a part of them, due to overcrowded conditions, with a consequent increase in waiting times. Due consideration of this factor is fundamental because, if it were to be repeated, it would make a further contribution to passengers’ discontent. While, as regards the estimate of dwell times on the basis of flows, it becomes fundamental in the planning phase. In fact, estimating dwell times as fixed values, ideally equal for all runs and all stations, can induce differences between actual and planned operations, with a subsequent deterioration in system performance. Thus, neglecting these aspects, above all in crowded contexts, would render the simulation distorted, both in terms of costs and benefits. The second aspect, on the other hand, concerns the correct assessment of effects of the strategies put in place, both in planning phases (strategic decisions such as the realisation of a new infrastructure, the improvement of the current signalling system or the purchasing of new rolling stock) and in operational phases (operational decisions such as the definition of intervention strategies for addressing disruption conditions). In fact, in the management of failures, to date, there are operational procedures which are based on hypothetical times for re-establishing ordinary conditions, estimated by the train driver or by the staff of the operation centre, who, generally, tend to minimise the impact exclusively from the company’s point of view (minimisation of operational costs), rather than from the standpoint of passengers. Additionally, in the definition of intervention strategies, passenger flow and its variation in time (different temporal intervals) and space (different points in the railway network) are rarely considered. It appears obvious, therefore, how the proposed re-examination of the dispatching and rescheduling tasks in a passenger-orientated perspective, should be accompanied by the development of estimation and forecasting techniques for travel demand, aimed at correctly taking into account the peculiarities of the railway system; as well as by the generation of ad-hoc tools designed to simulate the behaviour of passengers in the various phases of the trip (turnstile access, transfer from the turnstiles to the platform, waiting on platform, boarding and alighting process, etc.). The latest workstream in this present study concerns the analysis of the energy problems associated to rail transport. This is closely linked to what has so far been described. Indeed, in order to implement proper energy saving policies, it is, above all, necessary to obtain a reliable estimate of the involved operational times (recovery times, inversion times, buffer times, etc.). Moreover, as the adoption of eco-driving strategies generates an increase in passenger travel times, with everything that this involves, it is important to investigate the trade-off between energy efficiency and increase in user generalised costs. Within this framework, the present study aims at providing a DSS (Decision Support System) for all phases of planning and management of rail transport systems, from that of timetabling to dispatching and rescheduling, also considering space-time travel demand variability as well as the definition of suitable energy-saving policies, by adopting a passenger-orientated perspective

    Ecology-based planning. Italian and French experimentations

    Get PDF
    This paper examines some French and Italian experimentations of green infrastructures’ (GI) construction in relation to their techniques and methodologies. The construction of a multifunctional green infrastructure can lead to the generation of a number of relevant bene fi ts able to face the increasing challenges of climate change and resilience (for example, social, ecological and environmental through the recognition of the concept of ecosystem services) and could ease the achievement of a performance-based approach. This approach, differently from the traditional prescriptive one, helps to attain a better and more fl exible land-use integration. In both countries, GI play an important role in contrasting land take and, for their adaptive and cross-scale nature, they help to generate a res ilient approach to urban plans and projects. Due to their fl exible and site-based nature, GI can be adapted, even if through different methodologies and approaches, both to urban and extra-urban contexts. On one hand, France, through its strong national policy on ecological networks, recognizes them as one of the major planning strategies toward a more sustainable development of territories; on the other hand, Italy has no national policy and Regions still have a hard time integrating them in already existing planning tools. In this perspective, Italian experimentations on GI construction appear to be a simple and sporadic add-on of urban and regional plans
    corecore