11,931 research outputs found

    Heralded quantum steering over a high-loss channel

    Get PDF
    Entanglement is the key resource for many long-range quantum information tasks, including secure communication and fundamental tests of quantum physics. These tasks require robust verification of shared entanglement, but performing it over long distances is presently technologically intractable because the loss through an optical fiber or free-space channel opens up a detection loophole. We design and experimentally demonstrate a scheme that verifies entanglement in the presence of at least 14.8±0.114.8\pm0.1 dB of added loss, equivalent to approximately 8080 km of telecommunication fiber. Our protocol relies on entanglement swapping to herald the presence of a photon after the lossy channel, enabling event-ready implementation of quantum steering. This result overcomes the key barrier in device-independent communication under realistic high-loss scenarios and in the realization of a quantum repeater.Comment: 8 pages, 5 figure

    Design of a new method for detection of occupancy in the smart home using an FBG sensor

    Get PDF
    This article introduces a new way of using a fibre Bragg grating (FBG) sensor for detecting the presence and number of occupants in the monitored space in a smart home (SH). CO2 sensors are used to determine the CO2 concentration of the monitored rooms in an SH. CO2 sensors can also be used for occupancy recognition of the monitored spaces in SH. To determine the presence of occupants in the monitored rooms of the SH, the newly devised method of CO2 prediction, by means of an artificial neural network (ANN) with a scaled conjugate gradient (SCG) algorithm using measurements of typical operational technical quantities (indoor temperature, relative humidity indoor and CO2 concentration in the SH) is used. The goal of the experiments is to verify the possibility of using the FBG sensor in order to unambiguously detect the number of occupants in the selected room (R104) and, at the same time, to harness the newly proposed method of CO2 prediction with ANN SCG for recognition of the SH occupancy status and the SH spatial location (rooms R104, R203, and R204) of an occupant. The designed experiments will verify the possibility of using a minimum number of sensors for measuring the non-electric quantities of indoor temperature and indoor relative humidity and the possibility of monitoring the presence of occupants in the SH using CO2 prediction by means of the ANN SCG method with ANN learning for the data obtained from only one room (R203). The prediction accuracy exceeded 90% in certain experiments. The uniqueness and innovativeness of the described solution lie in the integrated multidisciplinary application of technological procedures (the BACnet technology control SH, FBG sensors) and mathematical methods (ANN prediction with SCG algorithm, the adaptive filtration with an LMS algorithm) employed for the recognition of number persons and occupancy recognition of selected monitored rooms of SH.Web of Science202art. no. 39

    Chromatic dispersion monitoring for high-speed WDM systems using two-photon absorption in a semiconductor microcavity

    Get PDF
    This paper presents a theoretical and experimental investigation into the use of a two-photon absorption (TPA) photodetector for use in chromatic dispersion (CD) monitoring in high-speed, WDM network. In order to overcome the inefficiency associated with the nonlinear optical-to-electrical TPA process, a microcavity structure is employed. An interesting feature of such a solution is the fact that the microcavity enhances only a narrow wavelength range determined by device design and angle at which the signal enters the device. Thus, a single device can be used to monitor a number of different wavelength channels without the need for additional external filters. When using a nonlinear photodetector, the photocurrent generated for Gaussian pulses is inversely related to the pulsewidth. However, when using a microcavity structure, the cavity bandwidth also needs to be considered, as does the shape of the optical pulses incident on the device. Simulation results are presented for a variety of cavity bandwidths, pulse shapes and durations, and spacing between adjacent wavelength channels. These results are verified experimental using a microcavity with a bandwidth of 260 GHz (2.1 nm) at normal incident angle, with the incident signal comprising of two wavelength channels separated by 1.25 THz (10 nm), each operating at an aggregate data rate of 160 Gb/s. The results demonstrate the applicability of the presented technique to monitor accumulated dispersion fluctuations in a range of 3 ps/nm for 160 Gb/s RZ data channel

    Performance of the wavelet-transform-neural network based receiver for DPIM in diffuse indoor optical wireless links in presence of artificial light interference

    Get PDF
    Artificial neural network (ANN) has application in communication engineering in diverse areas such as channel equalization, channel modeling, error control code because of its capability of nonlinear processing, adaptability, and parallel processing. On the other hand, wavelet transform (WT) with both the time and the frequency resolution provides the exact representation of signal in both domains. Applying these signal processing tools for channel compensation and noise reduction can provide an enhanced performance compared to the traditional tools. In this paper, the slot error rate (SER) performance of digital pulse interval modulation (DPIM) in diffuse indoor optical wireless (OW) links subjected to the artificial light interference (ALI) is reported with new receiver structure based on the discrete WT (DWT) and ANN. Simulation results show that the DWT-ANN based receiver is very effective in reducing the effect of multipath induced inter-symbol interference (ISI) and ALI

    On-Body Channel Measurement Using Wireless Sensors

    Get PDF
    © 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.This post-acceptance version of the paper is essentially complete, but may differ from the official copy of record, which can be found at the following web location (subscription required to access full paper): http://dx.doi.org/10.1109/TAP.2012.219693

    Chaste: an open source C++ library for computational physiology and biology

    Get PDF
    Chaste - Cancer, Heart And Soft Tissue Environment - is an open source C++ library for the computational simulation of mathematical models developed for physiology and biology. Code development has been driven by two initial applications: cardiac electrophysiology and cancer development. A large number of cardiac electrophysiology studies have been enabled and performed, including high performance computational investigations of defibrillation on realistic human cardiac geometries. New models for the initiation and growth of tumours have been developed. In particular, cell-based simulations have provided novel insight into the role of stem cells in the colorectal crypt. Chaste is constantly evolving and is now being applied to a far wider range of problems. The code provides modules for handling common scientific computing components, such as meshes and solvers for ordinary and partial differential equations (ODEs/PDEs). Re-use of these components avoids the need for researchers to "re-invent the wheel" with each new project, accelerating the rate of progress in new applications. Chaste is developed using industrially-derived techniques, in particular test-driven development, to ensure code quality, re-use and reliability. In this article we provide examples that illustrate the types of problems Chaste can be used to solve, which can be run on a desktop computer. We highlight some scientific studies that have used or are using Chaste, and the insights they have provided. The source code, both for specific releases and the development version, is available to download under an open source Berkeley Software Distribution (BSD) licence at http://www.cs.ox.ac.uk/chaste, together with details of a mailing list and links to documentation and tutorials

    Qualification model spacecraft tests for DEMP, SGEMP, and ESD effects

    Get PDF
    The development of a satellite design demonstration test program is described. The test approach is comprehensive in that it includes the effects from electrostatic discharge (ESD), system generated electromagnetic pulse (SGEMP), as well as dispersed electromagnetic pulses (DEMP). The comprehensive test concept is based on the similarity of the satellite's response to several environments
    corecore