22,114 research outputs found

    Meta learning of bounds on the Bayes classifier error

    Full text link
    Meta learning uses information from base learners (e.g. classifiers or estimators) as well as information about the learning problem to improve upon the performance of a single base learner. For example, the Bayes error rate of a given feature space, if known, can be used to aid in choosing a classifier, as well as in feature selection and model selection for the base classifiers and the meta classifier. Recent work in the field of f-divergence functional estimation has led to the development of simple and rapidly converging estimators that can be used to estimate various bounds on the Bayes error. We estimate multiple bounds on the Bayes error using an estimator that applies meta learning to slowly converging plug-in estimators to obtain the parametric convergence rate. We compare the estimated bounds empirically on simulated data and then estimate the tighter bounds on features extracted from an image patch analysis of sunspot continuum and magnetogram images.Comment: 6 pages, 3 figures, to appear in proceedings of 2015 IEEE Signal Processing and SP Education Worksho

    Asymptotically minimax empirical Bayes estimation of a sparse normal mean vector

    Full text link
    For the important classical problem of inference on a sparse high-dimensional normal mean vector, we propose a novel empirical Bayes model that admits a posterior distribution with desirable properties under mild conditions. In particular, our empirical Bayes posterior distribution concentrates on balls, centered at the true mean vector, with squared radius proportional to the minimax rate, and its posterior mean is an asymptotically minimax estimator. We also show that, asymptotically, the support of our empirical Bayes posterior has roughly the same effective dimension as the true sparse mean vector. Simulation from our empirical Bayes posterior is straightforward, and our numerical results demonstrate the quality of our method compared to others having similar large-sample properties.Comment: 18 pages, 3 figures, 3 table

    Algorithms for Approximate Minimization of the Difference Between Submodular Functions, with Applications

    Full text link
    We extend the work of Narasimhan and Bilmes [30] for minimizing set functions representable as a difference between submodular functions. Similar to [30], our new algorithms are guaranteed to monotonically reduce the objective function at every step. We empirically and theoretically show that the per-iteration cost of our algorithms is much less than [30], and our algorithms can be used to efficiently minimize a difference between submodular functions under various combinatorial constraints, a problem not previously addressed. We provide computational bounds and a hardness result on the mul- tiplicative inapproximability of minimizing the difference between submodular functions. We show, however, that it is possible to give worst-case additive bounds by providing a polynomial time computable lower-bound on the minima. Finally we show how a number of machine learning problems can be modeled as minimizing the difference between submodular functions. We experimentally show the validity of our algorithms by testing them on the problem of feature selection with submodular cost features.Comment: 17 pages, 8 figures. A shorter version of this appeared in Proc. Uncertainty in Artificial Intelligence (UAI), Catalina Islands, 201
    corecore