586 research outputs found

    Matchings, coverings, and Castelnuovo-Mumford regularity

    Full text link
    We show that the co-chordal cover number of a graph G gives an upper bound for the Castelnuovo-Mumford regularity of the associated edge ideal. Several known combinatorial upper bounds of regularity for edge ideals are then easy consequences of covering results from graph theory, and we derive new upper bounds by looking at additional covering results.Comment: 12 pages; v4 has minor changes for publicatio

    Partitions and Coverings of Trees by Bounded-Degree Subtrees

    Full text link
    This paper addresses the following questions for a given tree TT and integer d2d\geq2: (1) What is the minimum number of degree-dd subtrees that partition E(T)E(T)? (2) What is the minimum number of degree-dd subtrees that cover E(T)E(T)? We answer the first question by providing an explicit formula for the minimum number of subtrees, and we describe a linear time algorithm that finds the corresponding partition. For the second question, we present a polynomial time algorithm that computes a minimum covering. We then establish a tight bound on the number of subtrees in coverings of trees with given maximum degree and pathwidth. Our results show that pathwidth is the right parameter to consider when studying coverings of trees by degree-3 subtrees. We briefly consider coverings of general graphs by connected subgraphs of bounded degree

    Covering line graphs with equivalence relations

    Get PDF
    An equivalence graph is a disjoint union of cliques, and the equivalence number eq(G)\mathit{eq}(G) of a graph GG is the minimum number of equivalence subgraphs needed to cover the edges of GG. We consider the equivalence number of a line graph, giving improved upper and lower bounds: 13log2log2χ(G)<eq(L(G))2log2log2χ(G)+2\frac 13 \log_2\log_2 \chi(G) < \mathit{eq}(L(G)) \leq 2\log_2\log_2 \chi(G) + 2. This disproves a recent conjecture that eq(L(G))\mathit{eq}(L(G)) is at most three for triangle-free GG; indeed it can be arbitrarily large. To bound eq(L(G))\mathit{eq}(L(G)) we bound the closely-related invariant σ(G)\sigma(G), which is the minimum number of orientations of GG such that for any two edges e,fe,f incident to some vertex vv, both ee and ff are oriented out of vv in some orientation. When GG is triangle-free, σ(G)=eq(L(G))\sigma(G)=\mathit{eq}(L(G)). We prove that even when GG is triangle-free, it is NP-complete to decide whether or not σ(G)3\sigma(G)\leq 3.Comment: 10 pages, submitted in July 200

    Vertex covering with monochromatic pieces of few colours

    Full text link
    In 1995, Erd\H{o}s and Gy\'arf\'as proved that in every 22-colouring of the edges of KnK_n, there is a vertex cover by 2n2\sqrt{n} monochromatic paths of the same colour, which is optimal up to a constant factor. The main goal of this paper is to study the natural multi-colour generalization of this problem: given two positive integers r,sr,s, what is the smallest number pcr,s(Kn)\text{pc}_{r,s}(K_n) such that in every colouring of the edges of KnK_n with rr colours, there exists a vertex cover of KnK_n by pcr,s(Kn)\text{pc}_{r,s}(K_n) monochromatic paths using altogether at most ss different colours? For fixed integers r>sr>s and as nn\to\infty, we prove that pcr,s(Kn)=Θ(n1/χ)\text{pc}_{r,s}(K_n) = \Theta(n^{1/\chi}), where χ=max{1,2+2sr}\chi=\max{\{1,2+2s-r\}} is the chromatic number of the Kneser gr aph KG(r,rs)\text{KG}(r,r-s). More generally, if one replaces KnK_n by an arbitrary nn-vertex graph with fixed independence number α\alpha, then we have pcr,s(G)=O(n1/χ)\text{pc}_{r,s}(G) = O(n^{1/\chi}), where this time around χ\chi is the chromatic number of the Kneser hypergraph KG(α+1)(r,rs)\text{KG}^{(\alpha+1)}(r,r-s). This result is tight in the sense that there exist graphs with independence number α\alpha for which pcr,s(G)=Ω(n1/χ)\text{pc}_{r,s}(G) = \Omega(n^{1/\chi}). This is in sharp contrast to the case r=sr=s, where it follows from a result of S\'ark\"ozy (2012) that pcr,r(G)\text{pc}_{r,r}(G) depends only on rr and α\alpha, but not on the number of vertices. We obtain similar results for the situation where instead of using paths, one wants to cover a graph with bounded independence number by monochromatic cycles, or a complete graph by monochromatic dd-regular graphs
    corecore