2 research outputs found

    Analyse et développement d'un schéma de discrétisation numérique de l'équation du transport des neutrons en géométrie tridimensionnelle

    Get PDF
    La méthode des caractéristiques (méthode MOC) est une méthode efficace et flexible de résolution de l équation de transport. Cette approche a été considérablement utilisée dans les calculs en deux dimensions car elle permet de traiter des géométries complexes et elle possède un bon ratio temps/précision. Cependant, malgré les améliorations des moyens de stockage et de calcul dans le secteur informatique, un calcul direct en trois dimensions reste encore impossible.Dans ce travail, nous introduisons et analysons plusieurs modifications de la méthode MOC dans le but de réduire la quantité requise de mémoire ainsi que la charge de calcul. Ce document se penche sur l étude d une approximation spatiale aux ordres supérieurs pour le flux volumique. En se démarquant de la méthode classique (la méthode MOC constante par morceaux) l augmentation des détails de la représentation du flux volumique peut permettre de réduire la taille des mailles tout en gardant une bonne précision. Les résultats numériques effectués sur des benchmarks confirment les gains en ratio temps/précision. En ce qui concerne le stockage mémoire, le nombre de trajectoires influe sur la quantité de données à stocker. De ce fait, nous explorons une méthode de traçage par traceurs locaux définis par sous domaines possédant la même géométrie. Les redondances présentes dans les coeurs des réacteurs nucléaires promettent une réduction importante de la quantité de mémoire requise. Deux méthodes de traçage ont été étudiées : la première est une méthode de traçage non-uniforme prenant en compte les discontinuités dans la maille et la deuxième est une méthode fondée sur des trajectoires périodiques et continues d une maille à l autre.The method of characteristics is a flexible and efficient method solving the transport equation. It has been largely used in two dimension calculations because it enables to study complex geometries and it has a good time/precision ratio. However, despite agreat improvement in storage capacities and computing power, a direct three dimension calculation is still unreachable.In the following work, we introduce and analyze several modifications of the methodof characteristics (MOC) in order to reduce the memory usage as well as calculation burden. This document aims at studying a higher order spatial approximation for theflux. It steps away from the classical method (constant MOC) by introducing an increaseof details of the representation of the flux, which may enable to reduce the size of thegrid while keeping a good precision. Numerical results tested on benchmarks show animprovement of time/precision ratio.Regarding the memory storage, the number of trajectories has an influence on the amount of data to be stored. Hence, we study a tracking method based on local tracks defined for all subdomains having the same geometry. Redundancies happening in a reactor core suggest an important reduction of required memory. Two tracking methods have been studied, the first one being a non-uniform tracking method including subdomain discontinuities and the other being a method based on periodic and continuous trajectories for a subdomain to another.PARIS11-SCD-Bib. électronique (914719901) / SudocSudocFranceF

    Inverse Boundary Element/genetic Algorithm Method For Reconstruction O

    Get PDF
    A methodology is formulated for the solution of the inverse problem concerned with the reconstruction of multi-dimensional heat fluxes for film cooling applications. The motivation for this study is the characterization of complex thermal conditions in industrial applications such as those encountered in film cooled turbomachinery components. The heat conduction problem in the metal endwall/shroud is solved using the boundary element method (bem), and the inverse problem is solved using a genetic algorithm (ga). Thermal conditions are overspecified at exposed surfaces amenable to measurement, while the temperature and surface heat flux distributions are unknown at the film cooling hole/slot walls. The latter are determined in an iterative process by developing two approaches. The first approach, developed for 2d applications, solves an inverse problem whose objective is to adjust the film cooling hole/slot wall temperatures and heat fluxes until the temperature and heat flux at the measurement surfaces are matched in an overall heat conduction solution. The second approach, developed for 2d and 3d applications, is to distribute a set of singularities (sinks) at the vicinity of the cooling slots/holes surface inside a fictitious extension of the physical domain or along cooling hole centerline with a given initial strength distribution. The inverse problem iteratively alters the strength distribution of the singularities (sinks) until the measuring surfaces heat fluxes are matched. The heat flux distributions are determined in a post-processing stage after the inverse problem is solved. The second approach provides a tremendous advantage in solving the inverse problem, particularly in 3d applications, and it is recommended as the method of choice for this class of problems. It can be noted that the ga reconstructed heat flux distributions are robust, yielding accurate results to both exact and error-laden inputs. In all cases in this study, results from experiments are simulated using a full conjugate heat transfer (cht) finite volume models which incorporate the interactions of the external convection in the hot turbulent gas, internal convection within the cooling plena, and the heat conduction in the metal endwall/shroud region. Extensive numerical investigations are undertaken to demonstrate the significant importance of conjugate heat transfer in film cooling applications and to identify the implications of various turbulence models in the prediction of accurate and more realistic surface temperatures and heat fluxes in the cht simulations. These, in turn, are used to provide numerical inputs to the inverse problem. Single and multiple cooling slots, cylindrical cooling holes, and fan-shaped cooling holes are considered in this study. The turbulence closure is modeled using several two-equation approach, the four-equation turbulence model, as well as five and seven moment reynolds stress models. The predicted results, by the different turbulence models, for the cases of adiabatic and conjugate models, are compared to experimental data reported in the open literature. Results show the significant effects of conjugate heat transfer on the temperature field in the film cooling hole region, and the additional heating up of the cooling jet itself. Moreover, results from the detailed numerical studies presented in this study validate the inverse problem approaches and reveal good agreement between the bem/ga reconstructed heat fluxes and the cht simulated heat fluxes along the inaccessible cooling slot/hole wall
    corecore