9,796 research outputs found

    Full Diversity Space-Time Block Codes with Low-Complexity Partial Interference Cancellation Group Decoding

    Full text link
    Partial interference cancellation (PIC) group decoding proposed by Guo and Xia is an attractive low-complexity alternative to the optimal processing for multiple-input multiple-output (MIMO) wireless communications. It can well deal with the tradeoff among rate, diversity and complexity of space-time block codes (STBC). In this paper, a systematic design of full-diversity STBC with low-complexity PIC group decoding is proposed. The proposed code design is featured as a group-orthogonal STBC by replacing every element of an Alamouti code matrix with an elementary matrix composed of multiple diagonal layers of coded symbols. With the PIC group decoding and a particular grouping scheme, the proposed STBC can achieve full diversity, a rate of (2M)/(M+2)(2M)/(M+2) and a low-complexity decoding for MM transmit antennas. Simulation results show that the proposed codes can achieve the full diversity with PIC group decoding while requiring half decoding complexity of the existing codes.Comment: 10 pages, 3 figures

    MMSE Optimal Algebraic Space-Time Codes

    Full text link
    Design of Space-Time Block Codes (STBCs) for Maximum Likelihood (ML) reception has been predominantly the main focus of researchers. However, the ML decoding complexity of STBCs becomes prohibitive large as the number of transmit and receive antennas increase. Hence it is natural to resort to a suboptimal reception technique like linear Minimum Mean Squared Error (MMSE) receiver. Barbarossa et al and Liu et al have independently derived necessary and sufficient conditions for a full rate linear STBC to be MMSE optimal, i.e achieve least Symbol Error Rate (SER). Motivated by this problem, certain existing high rate STBC constructions from crossed product algebras are identified to be MMSE optimal. Also, it is shown that a certain class of codes from cyclic division algebras which are special cases of crossed product algebras are MMSE optimal. Hence, these STBCs achieve least SER when MMSE reception is employed and are fully diverse when ML reception is employed.Comment: 5 pages, 1 figure, journal version to appear in IEEE Transactions on Wireless Communications. Conference version appeared in NCC 2007, IIT Kanpur, Indi

    DMT Optimality of LR-Aided Linear Decoders for a General Class of Channels, Lattice Designs, and System Models

    Full text link
    The work identifies the first general, explicit, and non-random MIMO encoder-decoder structures that guarantee optimality with respect to the diversity-multiplexing tradeoff (DMT), without employing a computationally expensive maximum-likelihood (ML) receiver. Specifically, the work establishes the DMT optimality of a class of regularized lattice decoders, and more importantly the DMT optimality of their lattice-reduction (LR)-aided linear counterparts. The results hold for all channel statistics, for all channel dimensions, and most interestingly, irrespective of the particular lattice-code applied. As a special case, it is established that the LLL-based LR-aided linear implementation of the MMSE-GDFE lattice decoder facilitates DMT optimal decoding of any lattice code at a worst-case complexity that grows at most linearly in the data rate. This represents a fundamental reduction in the decoding complexity when compared to ML decoding whose complexity is generally exponential in rate. The results' generality lends them applicable to a plethora of pertinent communication scenarios such as quasi-static MIMO, MIMO-OFDM, ISI, cooperative-relaying, and MIMO-ARQ channels, in all of which the DMT optimality of the LR-aided linear decoder is guaranteed. The adopted approach yields insight, and motivates further study, into joint transceiver designs with an improved SNR gap to ML decoding.Comment: 16 pages, 1 figure (3 subfigures), submitted to the IEEE Transactions on Information Theor

    Integer-Forcing Linear Receivers

    Get PDF
    Linear receivers are often used to reduce the implementation complexity of multiple-antenna systems. In a traditional linear receiver architecture, the receive antennas are used to separate out the codewords sent by each transmit antenna, which can then be decoded individually. Although easy to implement, this approach can be highly suboptimal when the channel matrix is near singular. This paper develops a new linear receiver architecture that uses the receive antennas to create an effective channel matrix with integer-valued entries. Rather than attempting to recover transmitted codewords directly, the decoder recovers integer combinations of the codewords according to the entries of the effective channel matrix. The codewords are all generated using the same linear code which guarantees that these integer combinations are themselves codewords. Provided that the effective channel is full rank, these integer combinations can then be digitally solved for the original codewords. This paper focuses on the special case where there is no coding across transmit antennas and no channel state information at the transmitter(s), which corresponds either to a multi-user uplink scenario or to single-user V-BLAST encoding. In this setting, the proposed integer-forcing linear receiver significantly outperforms conventional linear architectures such as the zero-forcing and linear MMSE receiver. In the high SNR regime, the proposed receiver attains the optimal diversity-multiplexing tradeoff for the standard MIMO channel with no coding across transmit antennas. It is further shown that in an extended MIMO model with interference, the integer-forcing linear receiver achieves the optimal generalized degrees-of-freedom.Comment: 40 pages, 16 figures, to appear in the IEEE Transactions on Information Theor

    Precoded Integer-Forcing Universally Achieves the MIMO Capacity to Within a Constant Gap

    Full text link
    An open-loop single-user multiple-input multiple-output communication scheme is considered where a transmitter, equipped with multiple antennas, encodes the data into independent streams all taken from the same linear code. The coded streams are then linearly precoded using the encoding matrix of a perfect linear dispersion space-time code. At the receiver side, integer-forcing equalization is applied, followed by standard single-stream decoding. It is shown that this communication architecture achieves the capacity of any Gaussian multiple-input multiple-output channel up to a gap that depends only on the number of transmit antennas.Comment: to appear in the IEEE Transactions on Information Theor

    Open-Loop Spatial Multiplexing and Diversity Communications in Ad Hoc Networks

    Full text link
    This paper investigates the performance of open-loop multi-antenna point-to-point links in ad hoc networks with slotted ALOHA medium access control (MAC). We consider spatial multiplexing transmission with linear maximum ratio combining and zero forcing receivers, as well as orthogonal space time block coded transmission. New closed-form expressions are derived for the outage probability, throughput and transmission capacity. Our results demonstrate that both the best performing scheme and the optimum number of transmit antennas depend on different network parameters, such as the node intensity and the signal-to-interference-and-noise ratio operating value. We then compare the performance to a network consisting of single-antenna devices and an idealized fully centrally coordinated MAC. These results show that multi-antenna schemes with a simple decentralized slotted ALOHA MAC can outperform even idealized single-antenna networks in various practical scenarios.Comment: 51 pages, 19 figures, submitted to IEEE Transactions on Information Theor

    Cooperative Compute-and-Forward

    Full text link
    We examine the benefits of user cooperation under compute-and-forward. Much like in network coding, receivers in a compute-and-forward network recover finite-field linear combinations of transmitters' messages. Recovery is enabled by linear codes: transmitters map messages to a linear codebook, and receivers attempt to decode the incoming superposition of signals to an integer combination of codewords. However, the achievable computation rates are low if channel gains do not correspond to a suitable linear combination. In response to this challenge, we propose a cooperative approach to compute-and-forward. We devise a lattice-coding approach to block Markov encoding with which we construct a decode-and-forward style computation strategy. Transmitters broadcast lattice codewords, decode each other's messages, and then cooperatively transmit resolution information to aid receivers in decoding the integer combinations. Using our strategy, we show that cooperation offers a significant improvement both in the achievable computation rate and in the diversity-multiplexing tradeoff.Comment: submitted to IEEE Transactions on Information Theor
    corecore