42 research outputs found

    BUT CHiME-7 system description

    Full text link
    This paper describes the joint effort of Brno University of Technology (BUT), AGH University of Krakow and University of Buenos Aires on the development of Automatic Speech Recognition systems for the CHiME-7 Challenge. We train and evaluate various end-to-end models with several toolkits. We heavily relied on Guided Source Separation (GSS) to convert multi-channel audio to single channel. The ASR is leveraging speech representations from models pre-trained by self-supervised learning, and we do a fusion of several ASR systems. In addition, we modified external data from the LibriSpeech corpus to become a close domain and added it to the training. Our efforts were focused on the far-field acoustic robustness sub-track of Task 1 - Distant Automatic Speech Recognition (DASR), our systems use oracle segmentation.Comment: 6 pages, Chime-7 challenge 202

    Postfiltering Using Multichannel Spectral Estimation in Multispeaker Environments

    Get PDF
    This paper investigates the problem of enhancing a single desired speech source from a mixture of signals in multispeaker environments. A beamformer structure is proposed which combines a fixed beamformer with postfiltering. In the first stage, the fixed multiobjective optimal beamformer is designed to spatially extract the desired source by suppressing all other undesired sources. In the second stage, a multichannel power spectral estimator is proposed and incorporated in the postfilter, thus enabling further suppression capability. The combined scheme exploits both spatial and spectral characteristics of the signals. Two new multichannel spectral estimation methods are proposed for the postfiltering using, respectively, inner product and joint diagonalization. Evaluations using recordings from a real-room environment show that the proposed beamformer offers a good interference suppression level whilst maintaining a low-distortion level of the desired source

    Dual-Channel Speech Enhancement Based on Extended Kalman Filter Relative Transfer Function Estimation

    Get PDF
    This paper deals with speech enhancement in dual-microphone smartphones using beamforming along with postfiltering techniques. The performance of these algorithms relies on a good estimation of the acoustic channel and speech and noise statistics. In this work we present a speech enhancement system that combines the estimation of the relative transfer function (RTF) between microphones using an extended Kalman filter framework with a novel speech presence probability estimator intended to track the noise statistics’ variability. The available dual-channel information is exploited to obtain more reliable estimates of clean speech statistics. Noise reduction is further improved by means of postfiltering techniques that take advantage of the speech presence estimation. Our proposal is evaluated in different reverberant and noisy environments when the smartphone is used in both close-talk and far-talk positions. The experimental results show that our system achieves improvements in terms of noise reduction, low speech distortion and better speech intelligibility compared to other state-of-the-art approaches.Spanish MINECO/FEDER Project TEC2016-80141-PSpanish Ministry of Education through the National Program FPU under Grant FPU15/0416

    Neural Network based Regression for Robust Overlapping Speech Recognition using Microphone Arrays

    Get PDF
    This paper investigates a neural network based acoustic feature mapping to extract robust features for automatic speech recognition (ASR) of overlapping speech. In our preliminary studies, we trained neural networks to learn the mapping from log mel filter bank energies (MFBEs) extracted from the distant microphone recordings, including multiple overlapping speakers, to log MFBEs extracted from the clean speech signal. In this paper, we explore the mapping of higher order mel-filterbank cepstral coefficients (MFCC) to lower order coefficients. We also investigate the mapping of features from both target and interfering distant sound sources to the clean target features. This is achieved by using the microphone array to extract features from both the direction of the target and interfering sound sources. We demonstrate the effectiveness of the proposed approach through extensive evaluations on the MONC corpus, which includes both non-overlapping single speaker and overlapping multi-speaker conditions

    The third 'CHiME' speech separation and recognition challenge: Analysis and outcomes

    Get PDF
    This paper presents the design and outcomes of the CHiME-3 challenge, the first open speech recognition evaluation designed to target the increasingly relevant multichannel, mobile-device speech recognition scenario. The paper serves two purposes. First, it provides a definitive reference for the challenge, including full descriptions of the task design, data capture and baseline systems along with a description and evaluation of the 26 systems that were submitted. The best systems re-engineered every stage of the baseline resulting in reductions in word error rate from 33.4% to as low as 5.8%. By comparing across systems, techniques that are essential for strong performance are identified. Second, the paper considers the problem of drawing conclusions from evaluations that use speech directly recorded in noisy environments. The degree of challenge presented by the resulting material is hard to control and hard to fully characterise. We attempt to dissect the various 'axes of difficulty' by correlating various estimated signal properties with typical system performance on a per session and per utterance basis. We find strong evidence of a dependence on signal-to-noise ratio and channel quality. Systems are less sensitive to variations in the degree of speaker motion. The paper concludes by discussing the outcomes of CHiME-3 in relation to the design of future mobile speech recognition evaluations
    corecore