1,498 research outputs found

    Interference-Mitigating Waveform Design for Next-Generation Wireless Systems

    No full text
    A brief historical perspective of the evolution of waveform designs employed in consecutive generations of wireless communications systems is provided, highlighting the range of often conflicting demands on the various waveform characteristics. As the culmination of recent advances in the field the underlying benefits of various Multiple Input Multiple Output (MIMO) schemes are highlighted and exemplified. As an integral part of the appropriate waveform design, cognizance is given to the particular choice of the duplexing scheme used for supporting full-duplex communications and it is demonstrated that Time Division Duplexing (TDD) is substantially outperformed by Frequency Division Duplexing (FDD), unless the TDD scheme is combined with further sophisticated scheduling, MIMOs and/or adaptive modulation/coding. It is also argued that the specific choice of the Direct-Sequence (DS) spreading codes invoked in DS-CDMA predetermines the properties of the system. It is demonstrated that a specifically designed family of spreading codes exhibits a so-called interference-free window (IFW) and hence the resultant system is capable of outperforming its standardised counterpart employing classic Orthogonal Variable Spreading Factor (OVSF) codes under realistic dispersive channel conditions, provided that the interfering multi-user and multipath components arrive within this IFW. This condition may be ensured with the aid of quasisynchronous adaptive timing advance control. However, a limitation of the system is that the number of spreading codes exhibiting a certain IFW is limited, although this problem may be mitigated with the aid of novel code design principles, employing a combination of several spreading sequences in the time-frequency and spatial-domain. The paper is concluded by quantifying the achievable user load of a UTRA-like TDD Code Division Multiple Access (CDMA) system employing Loosely Synchronized (LS) spreading codes exhibiting an IFW in comparison to that of its counterpart using OVSF codes. Both system's performance is enhanced using beamforming MIMOs

    Modeling of Orthogonal Frequency Division Multiplexing (OFDM) for Transmission in Broadband Wireless Communications

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is a multi carrier modulation technique that provides high bandwidth efficiency because the carriers are orthogonal to each other and multiple carriers share the data among themselves. The main advantage of this transmission technique is its robustness to channel fading in wireless communication environment. This paper investigates the effectiveness of OFDM and assesses its suitability as a modulation technique in wireless communications. Several of the main factors affecting the performance of a typical OFDM system are considered and they include multipath delay spread, channel noise, distortion (clipping), and timing requirements. The core processing block and performance analysis of the system is modeled usingMatlab

    Coded DS-CDMA Systems with Iterative Channel Estimation and no Pilot Symbols

    Full text link
    In this paper, we describe direct-sequence code-division multiple-access (DS-CDMA) systems with quadriphase-shift keying in which channel estimation, coherent demodulation, and decoding are iteratively performed without the use of any training or pilot symbols. An expectation-maximization channel-estimation algorithm for the fading amplitude, phase, and the interference power spectral density (PSD) due to the combined interference and thermal noise is proposed for DS-CDMA systems with irregular repeat-accumulate codes. After initial estimates of the fading amplitude, phase, and interference PSD are obtained from the received symbols, subsequent values of these parameters are iteratively updated by using the soft feedback from the channel decoder. The updated estimates are combined with the received symbols and iteratively passed to the decoder. The elimination of pilot symbols simplifies the system design and allows either an enhanced information throughput, an improved bit error rate, or greater spectral efficiency. The interference-PSD estimation enables DS-CDMA systems to significantly suppress interference.Comment: To appear, IEEE Transactions on Wireless Communication

    A Systematic Framework for the Construction of Optimal Complete Complementary Codes

    Full text link
    The complete complementary code (CCC) is a sequence family with ideal correlation sums which was proposed by Suehiro and Hatori. Numerous literatures show its applications to direct-spread code-division multiple access (DS-CDMA) systems for inter-channel interference (ICI)-free communication with improved spectral efficiency. In this paper, we propose a systematic framework for the construction of CCCs based on NN-shift cross-orthogonal sequence families (NN-CO-SFs). We show theoretical bounds on the size of NN-CO-SFs and CCCs, and give a set of four algorithms for their generation and extension. The algorithms are optimal in the sense that the size of resulted sequence families achieves theoretical bounds and, with the algorithms, we can construct an optimal CCC consisting of sequences whose lengths are not only almost arbitrary but even variable between sequence families. We also discuss the family size, alphabet size, and lengths of constructible CCCs based on the proposed algorithms

    Error probabilities of synchronous DS/CDMA communications over multipath Rayleigh fading channels

    Get PDF
    This paper derives error probabilities for BPSK synchronous DS/CDMA communications over multipath Rayleigh fading WSSUS channels using a RAKE receiver. Both cases of perfectly and approximately synchronized signal transmission are considered. Numerical results are presented.published_or_final_versio

    A Direct Sequence Code-Division Multiple-Access Local Area Network Model

    Get PDF
    The United States Air Force relies heavily on computer networks for every-day operations. The medium access control (MAC) protocol currently used by most local area (LAN) permits a single station to access the network at a time (e.g. CSMA/CD or Ethernet). This limits network throughput to, at most, the maximum transmission rate of a single node with overhead neglected. Significant delays are observed when a LAN is overloaded by multiple users attempting to access the common medium. In CSMA/CD, collisions are detected and the data sent by the nodes involved are delayed and transmitted at a later time. The retransmission time is determined with a binary exponential back-off-algorithm. Code Division Multiple Access (CDMA) is a technique that increases channel capacity by allowing multiple signals to occupy the same bandwidth simultaneously. Each signal is spread through multiplication with a unique pseudo-random code that distinguishes it from all other signals. Upon reception, the signal of interest is despread and separated from other incoming signals by multiplying it with the same exact code. With this technique, it is possible for multiple stations to transmit simultaneously with minimal ill effects. A simulation model is developed for a direct sequence spread spectrum CDMA (DS/CDMA) channel that incorporates the effects of multiple access interferers (MAI) having spreading codes from the same or different code families. The model introduces cross-correlation coefficients to calculate the signal-to-interference ratio and determine channel bit error performance. Transmission media attenuation and the near-far effects are accounted for in the model design. The model utility is demonstrated by determining the loss characteristics of a coaxial spread spectrum network. Due to the modular design, other transmission media characteristic can be easily incorporated. A bus network topology is simulated using 10Base2 coaxial cable. The model is compared and validated against a spread spectrum local area network hardware test bed
    • …
    corecore