392 research outputs found

    Direction of Arrival Algorithm using GSU-minimization

    Get PDF
    A smart antenna is a digital wireless communications antenna system that takes advantage of diversity effect at the source (transmitter), the destination (receiver) or both. Diversity effect involves the transmission and/or reception of multiple radio frequency (RF) waves to increase data speed and reduce the error rate. A smart antenna enables a higher capacity in wireless networks by effectively reducing multipath and co-channel interference. This is achieved by focusing the radiation only in the desired direction and adjusting itself to changing traffic conditions or signal environments. Smart antennas employ a set of radiating elements arranged in the form of an array. The GSU-MUSIC algorithm for DOA estimation of smart antenna is similar to MUSIC and it uses iterative approach based on GSU minimization to find accurate values of the peaks. The GSU-MUSIC Algorithm overcomes the problems associated with previous techniques used for DOA estimation of smart antenna. DOI: 10.17762/ijritcc2321-8169.160412

    Array signal processing robust to pointing errors

    No full text
    The objective of this thesis is to design computationally efficient DOA (direction-of- arrival) estimation algorithms and beamformers robust to pointing errors, by harnessing the antenna geometrical information and received signals. Initially, two fast root-MUSIC-type DOA estimation algorithms are developed, which can be applied in arbitrary arrays. Instead of computing all roots, the first proposed iterative algorithm calculates the wanted roots only. The second IDFT-based method obtains the DOAs by scanning a few circles in parallel and thus the rooting is avoided. Both proposed algorithms, with less computational burden, have the asymptotically similar performance to the extended root-MUSIC. The second main contribution in this thesis is concerned with the matched direction beamformer (MDB), without using the interference subspace. The manifold vector of the desired signal is modeled as a vector lying in a known linear subspace, but the associated linear combination vector is otherwise unknown due to pointing errors. This vector can be found by computing the principal eigen-vector of a certain rank-one matrix. Then a MDB is constructed which is robust to both pointing errors and overestimation of the signal subspace dimension. Finally, an interference cancellation beamformer robust to pointing errors is considered. By means of vector space projections, much of the pointing error can be eliminated. A one-step power estimation is derived by using the theory of covariance fitting. Then an estimate-and-subtract interference canceller beamformer is proposed, in which the power inversion problem is avoided and the interferences can be cancelled completely

    Scattered Pilots and Virtual Carriers Based Frequency Offset Tracking for OFDM Systems: Algorithms, Identifiability, and Performance Analysis

    Get PDF
    In this paper, we propose a novel carrier frequency offset (CFO) tracking algorithm for orthogonal frequency division multiplexing (OFDM) systems by exploiting scattered pilot carriers and virtual carriers embedded in the existing OFDM standards. Assuming that the channel remains constant during two consecutive OFDM blocks and perfect timing, a CFO tracking algorithm is proposed using the limited number of pilot carriers in each OFDM block. Identifiability of this pilot based algorithm is fully discussed under the noise free environment, and a constellation rotation strategy is proposed to eliminate the c-ambiguity for arbitrary constellations. A weighted algorithm is then proposed by considering both scattered pilots and virtual carriers. We find that, the pilots increase the performance accuracy of the algorithm, while the virtual carriers reduce the chance of CFO outlier. Therefore, the proposed tracking algorithm is able to achieve full range CFO estimation, can be used before channel estimation, and could provide improved performance compared to existing algorithms. The asymptotic mean square error (MSE) of the proposed algorithm is derived and simulation results agree with the theoretical analysis

    Robust Beamforming and DOA Estimation

    Get PDF

    HIGH PERFORMANCE, LOW COST SUBSPACE DECOMPOSITION AND POLYNOMIAL ROOTING FOR REAL TIME DIRECTION OF ARRIVAL ESTIMATION: ANALYSIS AND IMPLEMENTATION

    Get PDF
    This thesis develops high performance real-time signal processing modules for direction of arrival (DOA) estimation for localization systems. It proposes highly parallel algorithms for performing subspace decomposition and polynomial rooting, which are otherwise traditionally implemented using sequential algorithms. The proposed algorithms address the emerging need for real-time localization for a wide range of applications. As the antenna array size increases, the complexity of signal processing algorithms increases, making it increasingly difficult to satisfy the real-time constraints. This thesis addresses real-time implementation by proposing parallel algorithms, that maintain considerable improvement over traditional algorithms, especially for systems with larger number of antenna array elements. Singular value decomposition (SVD) and polynomial rooting are two computationally complex steps and act as the bottleneck to achieving real-time performance. The proposed algorithms are suitable for implementation on field programmable gated arrays (FPGAs), single instruction multiple data (SIMD) hardware or application specific integrated chips (ASICs), which offer large number of processing elements that can be exploited for parallel processing. The designs proposed in this thesis are modular, easily expandable and easy to implement. Firstly, this thesis proposes a fast converging SVD algorithm. The proposed method reduces the number of iterations it takes to converge to correct singular values, thus achieving closer to real-time performance. A general algorithm and a modular system design are provided making it easy for designers to replicate and extend the design to larger matrix sizes. Moreover, the method is highly parallel, which can be exploited in various hardware platforms mentioned earlier. A fixed point implementation of proposed SVD algorithm is presented. The FPGA design is pipelined to the maximum extent to increase the maximum achievable frequency of operation. The system was developed with the objective of achieving high throughput. Various modern cores available in FPGAs were used to maximize the performance and details of these modules are presented in detail. Finally, a parallel polynomial rooting technique based on Newton’s method applicable exclusively to root-MUSIC polynomials is proposed. Unique characteristics of root-MUSIC polynomial’s complex dynamics were exploited to derive this polynomial rooting method. The technique exhibits parallelism and converges to the desired root within fixed number of iterations, making this suitable for polynomial rooting of large degree polynomials. We believe this is the first time that complex dynamics of root-MUSIC polynomial were analyzed to propose an algorithm. In all, the thesis addresses two major bottlenecks in a direction of arrival estimation system, by providing simple, high throughput, parallel algorithms
    • …
    corecore