30 research outputs found

    UTM-Chain: Blockchain-Based Secure Unmanned Traffic Management for Internet of Drones

    Get PDF
    Unmanned aerial systems (UAVs) are dramatically evolving and promoting several civil applications. However, they are still prone to many security issues that threaten public safety. Security becomes even more challenging when they are connected to the Internet as their data stream is exposed to attacks. Unmanned traffic management (UTM) represents one of the most important topics for small unmanned aerial systems for beyond-line-of-sight operations in controlled low-altitude airspace. However, without securing the flight path exchanges between drones and ground stations or control centers, serious security threats may lead to disastrous situations. For example, a predefined flight path could be easily altered to make the drone perform illegal operations. Motivated by these facts, this paper discusses the security issues for UTM's components and addresses the security requirements for such systems. Moreover, we propose UTM-Chain, a lightweight blockchain-based security solution using hyperledger fabric for UTM of low-altitude UAVs which fits the computational and storage resources limitations of UAVs. Moreover, UTM-Chain provides secure and unalterable traffic data between the UAVs and their ground control stations. The performance of the proposed system related to transaction latency and resource utilization is analyzed by using cAdvisor. Finally, the analysis of security aspects demonstrates that the proposed UTM-Chain scheme is feasible and extensible for the secure sharing of UAV data

    MyBot: Cloud-Based Service Robot using Service-Oriented Architecture

    Get PDF
    This paper is an extended version of the conference paper presented in IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC 2016).This paper presents a viable solution for the development of service robots by leveraging cloud and Web services technologies, modular software architecture design, and Robot Operating System (ROS). The contributions of this paper are two- folded (1) Design of ROS Web services to provide new abstract interfaces to service robots that makes easier the interaction with and the development of service robots applications, and (2) Integration of the service robot to the cloud using the ROSLink protocol. We demonstrate through real-world implementation on the MyBot robot the effectiveness of these software abstraction layers in developing applications for service robots through the Internet and the cloud, and in accessing them through Internet. We believe that this work represents an important step towards a more popular use of service robots.info:eu-repo/semantics/publishedVersio

    DroneTrack: Cloud-Based Real-Time Object Tracking Using Unmanned Aerial Vehicles Over the Internet

    Get PDF
    Low-cost drones represent an emerging technology that opens the horizon for new smart Internet-of-Things (IoT) applications. Recent research efforts in cloud robotics are pushing for the integration of low-cost robots and drones with the cloud and the IoT. However, the performance of real-time cloud robotics systems remains a fundamental challenge that demands further investigation. In this paper, we present DroneTrack, a real-time object tracking system using a drone that follows a moving object over the Internet. The DroneTrack leverages the use of Dronemap planner (DP), a cloud-based system, for the control, communication, and management of drones over the Internet. The main contributions of this paper consist in: (1) the development and deployment of the DroneTrack, a real-time object tracking application through the DP cloud platform and (2) a comprehensive experimental study of the real-time performance of the tracking application. We note that the tracking does not imply computer vision techniques but it is rather based on the exchange of GPS locations through the cloud. Three scenarios are used for conducting various experiments with real and simulated drones. The experimental study demonstrates the effectiveness of the DroneTrack system, and a tracking accuracy of 3.5 meters in average is achieved with slow-speed moving targets.info:eu-repo/semantics/publishedVersio
    corecore