199,079 research outputs found

    Sharp Bounds on Davenport-Schinzel Sequences of Every Order

    Full text link
    One of the longest-standing open problems in computational geometry is to bound the lower envelope of nn univariate functions, each pair of which crosses at most ss times, for some fixed ss. This problem is known to be equivalent to bounding the length of an order-ss Davenport-Schinzel sequence, namely a sequence over an nn-letter alphabet that avoids alternating subsequences of the form ababa \cdots b \cdots a \cdots b \cdots with length s+2s+2. These sequences were introduced by Davenport and Schinzel in 1965 to model a certain problem in differential equations and have since been applied to bounding the running times of geometric algorithms, data structures, and the combinatorial complexity of geometric arrangements. Let λs(n)\lambda_s(n) be the maximum length of an order-ss DS sequence over nn letters. What is λs\lambda_s asymptotically? This question has been answered satisfactorily (by Hart and Sharir, Agarwal, Sharir, and Shor, Klazar, and Nivasch) when ss is even or s3s\le 3. However, since the work of Agarwal, Sharir, and Shor in the mid-1980s there has been a persistent gap in our understanding of the odd orders. In this work we effectively close the problem by establishing sharp bounds on Davenport-Schinzel sequences of every order ss. Our results reveal that, contrary to one's intuition, λs(n)\lambda_s(n) behaves essentially like λs1(n)\lambda_{s-1}(n) when ss is odd. This refutes conjectures due to Alon et al. (2008) and Nivasch (2010).Comment: A 10-page extended abstract will appear in the Proceedings of the Symposium on Computational Geometry, 201

    Operational State Complexity of Deterministic Unranked Tree Automata

    Full text link
    We consider the state complexity of basic operations on tree languages recognized by deterministic unranked tree automata. For the operations of union and intersection the upper and lower bounds of both weakly and strongly deterministic tree automata are obtained. For tree concatenation we establish a tight upper bound that is of a different order than the known state complexity of concatenation of regular string languages. We show that (n+1) ( (m+1)2^n-2^(n-1) )-1 vertical states are sufficient, and necessary in the worst case, to recognize the concatenation of tree languages recognized by (strongly or weakly) deterministic automata with, respectively, m and n vertical states.Comment: In Proceedings DCFS 2010, arXiv:1008.127

    Optimization of Information Rate Upper and Lower Bounds for Channels with Memory

    Full text link
    We consider the problem of minimizing upper bounds and maximizing lower bounds on information rates of stationary and ergodic discrete-time channels with memory. The channels we consider can have a finite number of states, such as partial response channels, or they can have an infinite state-space, such as time-varying fading channels. We optimize recently-proposed information rate bounds for such channels, which make use of auxiliary finite-state machine channels (FSMCs). Our main contribution in this paper is to provide iterative expectation-maximization (EM) type algorithms to optimize the parameters of the auxiliary FSMC to tighten these bounds. We provide an explicit, iterative algorithm that improves the upper bound at each iteration. We also provide an effective method for iteratively optimizing the lower bound. To demonstrate the effectiveness of our algorithms, we provide several examples of partial response and fading channels, where the proposed optimization techniques significantly tighten the initial upper and lower bounds. Finally, we compare our results with an improved variation of the \emph{simplex} local optimization algorithm, called \emph{Soblex}. This comparison shows that our proposed algorithms are superior to the Soblex method, both in terms of robustness in finding the tightest bounds and in computational efficiency. Interestingly, from a channel coding/decoding perspective, optimizing the lower bound is related to increasing the achievable mismatched information rate, i.e., the information rate of a communication system where the decoder at the receiver is matched to the auxiliary channel, and not to the original channel.Comment: Submitted to IEEE Transactions on Information Theory, November 24, 200

    Compressive Mining: Fast and Optimal Data Mining in the Compressed Domain

    Full text link
    Real-world data typically contain repeated and periodic patterns. This suggests that they can be effectively represented and compressed using only a few coefficients of an appropriate basis (e.g., Fourier, Wavelets, etc.). However, distance estimation when the data are represented using different sets of coefficients is still a largely unexplored area. This work studies the optimization problems related to obtaining the \emph{tightest} lower/upper bound on Euclidean distances when each data object is potentially compressed using a different set of orthonormal coefficients. Our technique leads to tighter distance estimates, which translates into more accurate search, learning and mining operations \textit{directly} in the compressed domain. We formulate the problem of estimating lower/upper distance bounds as an optimization problem. We establish the properties of optimal solutions, and leverage the theoretical analysis to develop a fast algorithm to obtain an \emph{exact} solution to the problem. The suggested solution provides the tightest estimation of the L2L_2-norm or the correlation. We show that typical data-analysis operations, such as k-NN search or k-Means clustering, can operate more accurately using the proposed compression and distance reconstruction technique. We compare it with many other prevalent compression and reconstruction techniques, including random projections and PCA-based techniques. We highlight a surprising result, namely that when the data are highly sparse in some basis, our technique may even outperform PCA-based compression. The contributions of this work are generic as our methodology is applicable to any sequential or high-dimensional data as well as to any orthogonal data transformation used for the underlying data compression scheme.Comment: 25 pages, 20 figures, accepted in VLD
    corecore