11 research outputs found

    On the Burer-Monteiro method for general semidefinite programs

    Full text link
    Consider a semidefinite program (SDP) involving an n×nn\times n positive semidefinite matrix XX. The Burer-Monteiro method uses the substitution X=YYTX=Y Y^T to obtain a nonconvex optimization problem in terms of an n×pn\times p matrix YY. Boumal et al. showed that this nonconvex method provably solves equality-constrained SDPs with a generic cost matrix when p≳2mp \gtrsim \sqrt{2m}, where mm is the number of constraints. In this note we extend their result to arbitrary SDPs, possibly involving inequalities or multiple semidefinite constraints. We derive similar guarantees for a fixed cost matrix and generic constraints. We illustrate applications to matrix sensing and integer quadratic minimization.Comment: 10 page

    SDP Relaxation with Randomized Rounding for Energy Disaggregation

    Get PDF
    We develop a scalable, computationally efficient method for the task of energy disaggregation for home appliance monitoring. In this problem the goal is to estimate the energy consumption of each appliance over time based on the total energy-consumption signal of a household. The current state of the art is to model the problem as inference in factorial HMMs, and use quadratic programming to find an approximate solution to the resulting quadratic integer program. Here we take a more principled approach, better suited to integer programming problems, and find an approximate optimum by combining convex semidefinite relaxations randomized rounding, as well as a scalable ADMM method that exploits the special structure of the resulting semidefinite program. Simulation results both in synthetic and real-world datasets demonstrate the superiority of our method

    SDP Relaxation with Randomized Rounding for Energy Disaggregation

    Get PDF
    We develop a scalable, computationally efficient method for the task of energy disaggregation for home appliance monitoring. In this problem the goal is to estimate the energy consumption of each appliance over time based on the total energy-consumption signal of a household. The current state of the art is to model the problem as inference in factorial HMMs, and use quadratic programming to find an approximate solution to the resulting quadratic integer program. Here we take a more principled approach, better suited to integer programming problems, and find an approximate optimum by combining convex semidefinite relaxations randomized rounding, as well as a scalable ADMM method that exploits the special structure of the resulting semidefinite program. Simulation results both in synthetic and real-world datasets demonstrate the superiority of our method

    Approximation Bounds for Sparse Programs

    Full text link
    We show that sparsity constrained optimization problems over low dimensional spaces tend to have a small duality gap. We use the Shapley-Folkman theorem to derive both data-driven bounds on the duality gap, and an efficient primalization procedure to recover feasible points satisfying these bounds. These error bounds are proportional to the rate of growth of the objective with the target cardinality, which means in particular that the relaxation is nearly tight as soon as the target cardinality is large enough so that only uninformative features are added

    Structured Dictionary Learning for Energy Disaggregation

    Full text link
    The increased awareness regarding the impact of energy consumption on the environment has led to an increased focus on reducing energy consumption. Feedback on the appliance level energy consumption can help in reducing the energy demands of the consumers. Energy disaggregation techniques are used to obtain the appliance level energy consumption from the aggregated energy consumption of a house. These techniques extract the energy consumption of an individual appliance as features and hence face the challenge of distinguishing two similar energy consuming devices. To address this challenge we develop methods that leverage the fact that some devices tend to operate concurrently at specific operation modes. The aggregated energy consumption patterns of a subgroup of devices allow us to identify the concurrent operating modes of devices in the subgroup. Thus, we design hierarchical methods to replace the task of overall energy disaggregation among the devices with a recursive disaggregation task involving device subgroups. Experiments on two real-world datasets show that our methods lead to improved performance as compared to baseline. One of our approaches, Greedy based Device Decomposition Method (GDDM) achieved up to 23.8%, 10% and 59.3% improvement in terms of micro-averaged f score, macro-averaged f score and Normalized Disaggregation Error (NDE), respectively.Comment: 10 Page

    Blueprint for a Scalable Photonic Fault-Tolerant Quantum Computer

    Full text link
    Photonics is the platform of choice to build a modular, easy-to-network quantum computer operating at room temperature. However, no concrete architecture has been presented so far that exploits both the advantages of qubits encoded into states of light and the modern tools for their generation. Here we propose such a design for a scalable and fault-tolerant photonic quantum computer informed by the latest developments in theory and technology. Central to our architecture is the generation and manipulation of three-dimensional hybrid resource states comprising both bosonic qubits and squeezed vacuum states. The proposal enables exploiting state-of-the-art procedures for the non-deterministic generation of bosonic qubits combined with the strengths of continuous-variable quantum computation, namely the implementation of Clifford gates using easy-to-generate squeezed states. Moreover, the architecture is based on two-dimensional integrated photonic chips used to produce a qubit cluster state in one temporal and two spatial dimensions. By reducing the experimental challenges as compared to existing architectures and by enabling room-temperature quantum computation, our design opens the door to scalable fabrication and operation, which may allow photonics to leap-frog other platforms on the path to a quantum computer with millions of qubits.Comment: 38 pages, many figures. Comments welcom
    corecore